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ABSTRACT

This article considers the problem of testing for linearity of stationary time
series. Portmanteau tests are discussed which are based on generalized cor-
relations of residuals from a linear model (that is, autocorrelations and cross-
correlations of di�erent powers of the residuals). The �nite-sample properties
of the tests are assessed by means of Monte Carlo experiments. The tests are
applied to 100 time series of stock returns.
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1. Introduction

The problem of testing for neglected nonlinearity in time series models has attracted a great deal of
interest in recent years. A multitude of statistical procedures designed to test the null hypothesis of
linearity against nonlinear alternatives are available in the literature, including general portmanteau tests
without a speci�c alternative as well as tests with fully speci�ed parametric alternatives; Tong (1990) and
Teräsvirta et al. (2010) provide useful overviews. Linearity tests have become an essential �rst step in
model-building exercises since, due to the di culties associated with the statistical analysis of nonlinear
models, it is oen desirable to establish the adequacy or otherwise of a linear data representation before
exploring more complicated nonlinear structures.

The present article contributes to this literature by considering portmanteau tests for linearity of
stationary time series based on “generalized correlations” of residuals from a �nite-parameter linear
model, that is to say autocorrelations and cross-correlations of di�erent powers of the residuals.1 Such
tests are similar in spirit to the popular test proposed by McLeod and Li (1983), which is based on
the empirical autocorrelations of squared residuals. The McLeod–Li test is known to respond well
to autoregressive conditional heteroskedasticity (ARCH) but tends to lack power against many other
interesting types of nonlinearity that do not have apparent ARCH structures.

In addition to tests based on the empirical autocorrelations of the second or higher power of residuals,
we also investigate tests that involve empirical cross-correlations between residuals and their squares
(or, more generally, cross-correlations between di�erent powers of the residuals). Lawrance and Lewis
(1985, 1987) put forward the idea of using such cross-correlations to identify nonlinear dependence
and examined analytically the cross-correlation functions for certain types of nonlinear models. Their
analysis, however, focused only on visual inspection of individual cross-correlations and they did not
consider the e�ects of parameter estimation.

In what follows, we tackle these problems by developing portmanteau tests based on the general-
ized correlations of residuals from linear models. The proposed tests are easy to implement and the
relevant test statistics have standard asymptotic null distributions under general regularity conditions.
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University of London, Malet Street, London WC1E 7HX, UK.
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1It isworthnoting that our useof the term “generalized correlations”di�ers from the concept of “generalized autocorrelations”
introduced recently in Proietti and Luati (2015).
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Furthermore, tests based on cross-correlations are shown to be more powerful against many types of
nonlinearity compared to the familiar test based on squared-residual autocorrelations.

The article is organized as follows. In Section 2, we discuss residual-based generalized correlations
and the associated portmanteau tests for linearity, and present some relevant asymptotic results. Section 3
examines the �nite-sample properties of the proposed tests by means of Monte Carlo experiments.
Section 4 presents an application to time series of stock returns. Section 5 summarizes and concludes.

2. Generalized correlations and portmanteau statistics

Consider a second-order stationary, short-range dependent, real-valued stochastic process {Xt} with
mean µ satisfying

Xt − µ = �(L)εt , t ∈ Z, (1)

where

�(z) = 1 +
∞∑

j=1

ψj(δ)z
j, z ∈ C,

{ψj(δ)} is an absolutely summable sequence of weights, assumed to be known functions of a �nite-
dimensional (row) vector δ of unknown parameters, {εt} is strictly stationary white noise, and L
denotes the lag operator. A leading example of a parametric model which gives rise to a process that
is representable as in (1) is the autoregressive moving average (ARMA) model. In this case, the transfer
function �(z) is of the form

�(z) = B(z)/A(z), z ∈ C, (2)

where, for some �xed p, q ∈ N ∪ {0} such that p + q > 0, A(z) = 1 −
∑p

i=1 αiz
i, with A(z) �= 0 for all

|z| � 1, B(z) = 1 +
∑q

i=1 βiz
i, and δ = (α1, . . . ,αp,β1, . . . ,βq).

A stochastic process {Xt} is typically characterized as linear if it admits the moving-average (MA)
representation (1) with {εt} being independent and identically distributed (i.i.d.) random variables. This
is the notion of linearity considered by McLeod and Li (1983), Lawrance and Lewis (1985, 1987), Bickel
and Bühlmann (1996), Berg et al. (2010), andGiannerini et al. (2015), amongmany others, and is the one
adopted in this article.2 It is worth noting, however, that this is not the only characterization of linearity
found in the literature. Hannan (1973), for instance, considers a second-order stationary process to be
linear if its best one-step-ahead linear predictor is the best predictor (both in the mean-square sense),
which is equivalent to {εt} in (1) being a square-integrable martingale-di�erence sequence relative to its
natural �ltration. This alternative characterization of linearity does not lend itself to the type of statistical
tests considered in the sequel.3

The focus of attention here are the generalized correlations of the noise {εt} in (1). For r, s ∈ N such
that E(|ε0|r+s) < ∞, we de�ne the generalized correlations of {εt} at lag k as

ρrs(k) = {γrr(0)γss(0)}−1/2γrs(k), k ∈ Z, (3)

where γrs(k) = Cov(εr0, ε
s
k). Thus, (3) gives the autocorrelations of {εt} for r = s = 1, the

autocorrelations of {ε2t } for r = s = 2, and cross-correlations of the type considered by Lawrance and
Lewis (1985, 1987) for (r, s) ∈ {(1, 2), (2, 1)}. Linearity of {Xt} implies that ρrs(k) = 0 for all k �= 0.

When an estimator θ̂ = (µ̂, δ̂) of θ = (µ, δ) is available, one may use residuals {ε̂t ; t = 1, 2, . . . ,T}
(to be de�ned in a precise manner later) in place of the unobservable noise {εt}. For r, s ∈ N, we de�ne

2For example, a causal ARMA process satisfying (1)–(2) is considered to be linear if {εt} are i.i.d. but nonlinear if {εt} form an

uncorrelated but not independent sequence (e.g., an in�nite-order ARCH sequence with εt = ηt

(
a0 +

∑∞
j=1 ajε

2
t−j

)1/2

and E(η20)
∑∞

j=1 aj < 1, {ηt} being i.i.d. zero-mean random variables).
3A test for linearity of the best predictor is discussed in Terdik and Máth (1998).
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the empirical generalized correlations of the residuals at lag k as

ρ̂rs(k) =
{
γ̂rr(0)γ̂ss(0)

}−1/2
γ̂rs(k), k = 0,±1, . . . ,±(T − 1), (4)

where γ̂rs(k) = T−1 ∑T−k
t=1 fr(ε̂t)fs(ε̂t+k) for k � 0, γ̂rs(k) = γ̂sr(−k) for k < 0, and fb(ξt) = ξ bt −

T−1(ξb1 +· · ·+ ξ bT) for any collection of random variables {ξt} and b ∈ N. Tests for linearity of {Xt}may
then be based on test statistics of the form

Q̊rs(m) = T

m∑

k=1

ρ̂2
rs(k), (5)

for some r, s,m ∈ N such that r + s > 2 andm < T. Asymptotically equivalent statistics of the form

Qrs(m) = T(T + 2)
m∑

k=1

(T − k)−1ρ̂2
rs(k), (6)

may also be considered (cf. McLeod and Li, 1983), which are similar in spirit to the modi�cation of the
Box–Pierce statistic Q̊11(m) proposed by Ljung and Box (1978).

In order to develop asymptotic distribution theory for residual-based generalized correlations and
associated portmanteau tests, the following assumptions are made (in the sequel, limits in stochastic-
order symbols are taken by letting T → ∞):
A1:{εt} are i.i.d. with E(ε0) = 0 and 0 < E(ε20) < ∞.
A2:�(z) is holomorphic in an open neighbourhood of the closed disc |z| � 1, does not vanish at any

|z| � 1, and is di�erentiable with respect to δ.
A3:

√
T(θ̂ − θ) = Op(1).

A4:∂γ̃rs(k)/∂θ = Op(T
−1/2) for k ∈ {0, 1, . . . ,T−1} and r, s ∈ N such that r+s > 2 and E[|ε0|2(r+s)] <

∞, where γ̃rs(k) = T−1 ∑T−k
t=1 fr(εt)fs(εt+k).

Assumption A1 amounts to linearity of {Xt} in our setting. Under A2, 1/�(z) has the convergent
power series expansion 1/�(z) = φ0(δ) −

∑∞
j=1 φj(δ)z

j for |z| � 1, with φ0(δ) = 1 and

φj(δ) = ψj(δ) −
j−1∑

i=1

φj−i(δ)ψi(δ), j ∈ N,

and, consequently, {Xt} admits the autoregressive (AR) representation

Xt − µ =
∞∑

j=1

φj(δ)(Xt−j − µ) + εt , t ∈ Z. (7)

Hence, given an estimator θ̂ based on a �nite stretch (X0,X1, . . . ,XT) of {Xt}, residuals may be de�ned
as (cf. Kreiss, 1991)

ε̂t = Xt − µ̂ −
t∑

j=1

φj(δ̂)(Xt−j − µ̂), t = 1, 2, . . . ,T.

Estimators of θ satisfying assumption A3 may be obtained by quasi-maximum likelihood or
instrumental-variablesmethods under suitable regularity conditions (see, e.g.,Hannan, 1973;Dunsmuir,
1979; Hosoya and Taniguchi, 1982; Kuersteiner, 2001). In the ARMA case speci�ed by (2), assumptions
A2–A4 hold true, under an i.i.d. assumption about {εt}, as long as the polynomials A(z) and B(z) have
no zeros in common and A(z)B(z) �= 0 for all |z| � 1.

We have the following result for the asymptotic distribution of a �nite set of empirical generalized
correlations of the residuals de�ned by (4) under the assumption that {Xt} is linear.
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Theorem 1. Suppose that {Xt} satis�es (1) and assumptions A1–A4 hold. Then, for any �xed m ∈ N and
r, s ∈ N such that r+s > 2 and E[|ε0|2(r+s)] < ∞, the asymptotic distribution of

√
T

(
ρ̂rs(1), . . . , ρ̂rs(m)

)
,

as T → ∞, is Gaussian with zero mean vector and identity covariance matrix.

Proof. For a �xedm < T, a Taylor expansion of γ̂rs(k) about θ leads to

γ̂rs(k) = γ̃rs(k) + ∂γ̃rs(k)

∂θ
(θ̂ − θ)′ + Op(T

−1) = γ̃rs(k) + Op(T
−1), k = 0, 1, . . . ,m.

Hence, the distribution of
√
T(γ̂rs(1) − γrs(1), . . . , γ̂rs(m) − γrs(m)) is asymptotically the same as the

distribution of
√
T(γ̃rs(1) − γrs(1), . . . , γ̃rs(m) − γrs(m)). Furthermore, putting ḟb(εt) = εbt − E(εb0),

b ∈ N, and noting that T−1 ∑T
t=1 ḟb(εt) = Op(T

−1/2) for b ∈ {r, s}, it is not di cult to show that

γ̃rs(k) − T−1 ∑T
t=1 ḟr(εt)ḟs(εt+k) = op(T

−1/2) for 0 � k � m. Therefore, recalling that γrs(k) = 0 for
all k �= 0 under assumption A1, by an application of the central limit theorem for strictly stationary,
�nitely dependent sequences (e.g., Anderson, 1971, Theorem 7.7.6) to the normalized partial sum
T−1/2 ∑T

t=1(ḟr(εt)ḟs(εt+1), . . . , ḟr(εt)ḟs(εt+m)), we may conclude that, as T → ∞, the distribution of√
T{γrr(0)γss(0)}−1/2(γ̂rs(1), . . . , γ̂rs(m)) converges weakly to the standard normal distribution onR

m.
The assertion of the theorem follows from this result and the fact that γ̂bb(0) = γ̃bb(0) + Op(T

−1) =
γbb(0) + op(1) for b ∈ {r, s}.

Theorem 1 generalizes the central limit theorem of McLeod and Li (1983), which is restricted to
the case where r = s = 2 and the transfer function �(z) is rational. It is readily seen that, under the
conditions of Theorem 1, the asymptotic distribution of the test statistics de�ned in (5) and (6) is chi-
square with m degrees of freedom. The implementation of tests based on statistics such as Q̊rs(m) and
Qrs(m) is straightforward and computationally inexpensive.4

3. Monte Carlo simulations

This section presents simulation results regarding the properties of portmanteau tests for linearity. In
addition to the �nite-sample size and power properties of the tests, we also examine the e�ects of non-
Gaussian noise, measurement errors, correlation order, and multiple testing.

3.1. Simulation design

The following data-generating processes (DGPs) are used in the simulations:
M1: Xt = 0.8Xt−1 + εt
M2: Xt = 0.6Xt−1 − 0.5Xt−2 + εt
M3: Xt = 0.8εt−1 + εt
M4: Xt = 0.8Xt−1 + 0.15Xt−2 + 0.3εt−1 + εt
M5: Xt = 0.6Xt−1 + 0.4εt−1 + εt
M6: Xt = 0.8Xt−1I(Xt−1 � −1) − 0.8Xt−1I(Xt−1 > −1) + εt
M7: Xt = −0.5Xt−1I(Xt−1 � 1) + 0.4Xt−1I(Xt−1 > 1) + εt
M8: Xt = −0.5Xt−1{1 − G(Xt−1)} + 0.4Xt−1G(Xt−1) + εt
M9: Xt = 0.8Xt−1{1 − G(Xt−1)} − 0.8Xt−1G(Xt−1) + εt
M10:Xt = 0.8|Xt−1|1/2 + εt
M11:Xt = Y2

t + εt , Yt = 0.6Yt−1 + νt
M12:Xt = σtεt , σ 2

t = 0.1 + 0.6X2
t−1

M13:Xt = σtεt , σ 2
t = 0.01 + 0.12X2

t−1 + 0.85σ 2
t−1

4For example, the full set ofMonteCarlo experiments reported in Section 3 took approximately 3 hours to carry out inMATLAB
running under Windows 7 (64-bit) on a laptop with Intel Core i7 2.60 GHz processor and 8 GB of RAM.
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M14:Xt = σtεt , ln σ 2
t = 0.01 + 0.3{|εt−1| − E(|εt−1|)} − 0.8εt−1 + 0.9 ln σ 2

t−1
M15:Xt = 0.4Xt−1 − 0.3Xt−2 + (0.8 + 0.5Xt−1)εt−1 + εt
M16:Xt = 0.5 − (0.4 − 0.4εt−1)Xt−1 + εt
M17:Xt = 0.8ε2t−2 + εt
M18:Xt = −0.3εt−1 + (0.2 + 0.4εt−1 − 0.25εt−2)εt−2 + εt
Unless stated otherwise, {εt} and {νt} are i.i.d. standard normal random variables independent of each
other,G(x) = 1/(1+e−x) is the logistic distribution function, and I(A) denotes the indicator of eventA.
The DGPs cover a variety of linear and nonlinear processes used in the literature, namely ARMA [M1–
M5], threshold AR (TAR) [M6, M7], smooth-transition AR (STAR) [M8, M9], fractional AR (FAR)
[M10], square AR (SQAR) [M11], ARCH [M12], generalized ARCH (GARCH) [M13], exponential
GARCH (EGARCH) [M14], bilinear (BL) [M15, M16], and nonlinear MA (NLMA) [M17, M18].5

In the experiments, 5,000 independent arti�cial time series {Xt} of length 100 + T, with T ∈
{200, 500, 1000}, are generated according to M1–M18, but only the last T data points of each series are
used to carry out portmanteau tests for linearity. As preliminary analysis indicated that, for relatively
short time series, tests based on the statistics Qrs(m) de�ned in (6) control the Type I error probability
somewhat more successfully (albeit marginally) than tests based on the statistics Q̊rs(m) de�ned in (5),
we shall henceforth focus on the former.

Unless indicated otherwise, the tests are applied to least-squares residuals from an AR model
for {Xt} the order of which is determined by the Bayesian information criterion (BIC). The BIC
is de�ned according to Method 1 of Ng and Perron (2005) with the maximum allowable order set
equal to �8(T/100)1/4
, where �x
 denotes the largest integer not exceeding x.6 Employing an AR
model with data-dependent order as the null speci�cation is not only computationally convenient but
also theoretically attractive. Even when the DGP is not a �nite-order AR process, an AR model the
order of which increases simultaneously with the sample size may be viewed as a �nite-parameter
approximation to a linear process that admits the in�nite-order AR representation (7). If the order of
the AR approximation grows at a suitable rate, the approximation error becomes small as T increases,
and estimates of the parameters in (7) obtained from the approximating autoregression are consistent
and asymptotically normal (see Berk, 1974; Bhansali, 1978; Lewis and Reinsel, 1985).

3.2. Empirical size and power

The Monte Carlo rejection frequencies of tests, of nominal level 0.05, based on the statistics Q12(m),
Q21(m) andQ22(m), withm ∈ {1, 2, . . . , �

√
T
}, are shown in Figs. 1–3.7 Under linear DGPs (M1–M5),

all three portmanteau tests have empirical levels which do not di�er signi�cantly from the nominal level
regardless of the sample size T and the number of generalized correlationsm used to construct the test
statistic. It is noteworthy that the tests work well in the case of linear DGPs which do not have a �nite-
order AR structure (M3–M5), suggesting that AR approximations provide a useful way of modelling
dynamics under the null hypothesis in this context.

For all but two of the nonlinear DGPs (M6–M18), at least one of the two cross-correlation tests Q12

and Q21 has higher rejection frequencies than the Q22 test, especially when T � 500. The test based on
Q22 has a clear advantage in the case of time series generated according to M12 and M13, which is not
perhaps surprising since Q22 is asymptotically equivalent to a Lagrange multiplier statistic for testing
linearity against ARCH (see Luukkonen et al., 1988). The power of all the tests generally improves as T
increases.

5The DGPs are taken from Lee et al. (1993) [M11, M15, M18], Barnett et al. (1997) [M4], Hong and Lee (2003) [M2, M14], Hong
and White (2005) [M10], and Giannerini et al. (2015) [M1, M3, M5, M6, M7, M12, M13, M16, M17]; M8 and M9 are smooth-
transition variants of M7 and M6, respectively.

6Very similar results are obtained using Akaike’s information criterion instead of the BIC.
7Simulation results for tests of nominal level 0.01 and 0.10 are not reported, due to space constraints, but are available upon
request.
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Figure 1. Rejection frequencies of Qrs tests: T = 200.

3.3. Non-Gaussian noise

To investigate the sensitivity of the simulation results with respect to non-Gaussianity of the noise
in the DGP, we consider arti�cial time series (of length T = 500) generated according to M1–M18
with εt having either Student’s t distribution with d degrees of freedom or a gamma distribution with
shape parameter d and scale parameter 1. (The distributions are recentred and/or rescaled so as to have
zero mean and unit variance). We take d ∈ {10, 11, . . . , 19, 20}, a range of values which is su ciently
representative of some of the distributional characteristics (e.g., mild asymmetry and leptokurtosis) of
many economic and �nancial time series. Following the suggestion in Tong (1990, p. 324) that, when
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Figure 2. Rejection frequencies of Qrs tests: T = 500.

constructing tests for uncorrelatedness, autocorrelations at low lags should be watched more closely
than autocorrelations at high lags, we setm = �lnT
 (see also Tsay, 2010, p. 33).

For the sake of expositional simplicity and space conservation, the rejection frequencies of tests (of
nominal level 0.05) are averaged over the linear (M1–M5) and nonlinear (M6–M18) DGPs, and are
shown in Fig. 4 (straight lines indicate the average rejection frequencies of tests under Gaussian noise).
The results indicate that the level and power properties of the tests are generally insensitive with respect
to the value of the parameter d. In the case of gamma distributed noise, Q22 (Q21) has marginally lower
(higher) average power compared to the Gaussian case.
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Figure 3. Rejection frequencies of Qrs tests: T = 1,000.

3.4. Measurement errors

Economic and �nancial time series are oen contaminated by measurement errors due to, inter alia,
sampling, self-reporting, or imperfect data sources. To investigate the potential e�ect of such measure-
ment errors on tests for nonlinearity, we consider contaminated series (of length T = 500) generated
according to X∗

t = Xt + σηηt , where Xt comes from M1–M18 and {ηt} are i.i.d. random variables,
independent of {εt} and {νt}, having either Student’s t distribution with 10 degrees of freedom or a
gamma distribution with shape parameter 10 and scale parameter 1 (recentered and/or rescaled to have
zero mean and unit variance). The variance of the measurement error is allowed to be proportional to
the sample variance σ̂ 2

x of (X1, . . . ,XT), that is σ 2
η = ω2 σ̂ 2

x , where ω2 ∈ {0.005, 0.010, . . . , 0.060, 0.065}.
The range of values for the noise-to-signal ratio ω is calibrated according to Koreisha and Fang (1999)
and allows for up to 25% contamination by measurement errors.
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Figure 4. Rejection frequencies of Qrs tests under non-Gaussian noise.

Tests for linearity based on Qrs(m), with r, s ∈ {1, 2} and m = �lnT
, are implemented as described
in Section 3.1 using {X∗

t } in place of {Xt}. The rejection frequencies of tests (of nominal level 0.05),
averaged across the linear (M1–M5) and nonlinear (M6–M18) DGPs, are shown in Fig. 5. The tests
exhibit no substantial size distortion regardless of the contamination rate and the distribution of the
noise. Some power loss is observed as the contamination rate increases, but the reduction in power is
not of the magnitude that makes the tests unattractive for applications.

3.5. Higher-order correlations

Although the discussion in much of the article focuses on tests with r, s ∈ {1, 2}, the use of higher values
for (r, s) is, of course, possible. To examinewhether power gainsmay bemade by using higher-order gen-
eralized correlations, we compute the empirical power of tests based on Qrs(m) with r, s ∈ {1, 2, . . . , 6}
andm = �lnT
. The rejection frequencies of tests (of nominal level 0.05) for T = 500, averaged across
the nonlinear DGPs (M6–M18), are reported in Table 1. The results indicate that there are generally no
power improvements associated with the use of higher-order generalized correlations; for instance, tests
based on Q12 and Q32 have almost the same (average) rejection frequencies. Furthermore, it is worth
bearing in mind that the asymptotic justi�cation of portmanteau tests associated with high values of
(r, s) requires �niteness of a fairly large number of moments (cf. Theorem 1). This requirement may be
at oddswith the characteristics ofmany economic and �nancial time series (e.g., equity returns, exchange
rate returns, interest rates), for which it is oen argued that they only possess unconditional moments
of relatively low order (see, e.g., Koedijk et al., 1990; Jansen and de Vries, 1991; de Lima, 1997).
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Figure 5. Rejection frequencies of Qrs tests under contamination.

Table 1. Rejection frequencies of Qrs tests.

w Q1w Qw1 Q2w Qw2 Qww

2 0.77 0.40 0.72 0.72 0.72
3 0.19 0.24 0.42 0.76 0.38
4 0.65 0.42 0.60 0.66 0.53
5 0.24 0.32 0.36 0.66 0.32
6 0.53 0.42 0.48 0.60 0.34

3.6. Multiple testing

In practice, linearity is oen tested using several tests (e.g., Qrs(m), r, s ∈ {1, 2}) jointly and/or several
values of m. However, unless adjustments for multiple testing are made, there is an increased risk of
overstating the signi�cance of nonlinearity when many tests are carried out using the same set of data
(see Psaradakis, 2000). This is due to the fact that, if the linearity hypothesis is rejected when at least one
of the tests leads to a rejection, the overall Type I error probability associated with the multiple testing
procedure (i.e., the probability of at least one erroneous rejection) can be well in excess of the nominal
level of each individual test.

A simple Bonferroni-type adjustment for multiple testing based on Simes (1986) is considered here,
which may be implemented as follows. Let P(1) � P(2) � · · · � P(N) denote the ordered (asymptotic)
P-values associated with the set of portmanteau test statistics under consideration. Multiplicity-adjusted
P-values are then calculated as P̃(i) = min{NP(i)/i, 1}, i ∈ {1, 2, . . . ,N}, and the null hypothesis of
linearity is rejected at overall level α ∈ (0, 1) if min1�i�N P̃(i) � α. Simes’ procedure is generally less
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Table 2. Rejection frequencies under multiple testing.

Case A (N = 3) Case B (N = 18)

Unadjusted Adjusted Unadjusted Adjusted

M1 0.141 0.048 0.286 0.042
M2 0.136 0.044 0.287 0.039
M3 0.136 0.048 0.296 0.041
M4 0.137 0.054 0.284 0.043
M5 0.141 0.055 0.287 0.042
M6 1.000 1.000 1.000 1.000
M7 1.000 1.000 1.000 1.000
M8 0.964 0.919 0.997 0.966
M9 0.997 0.992 1.000 0.997
M10 0.723 0.542 0.931 0.681
M11 0.799 0.703 0.941 0.788
M12 1.000 0.999 1.000 0.999
M13 0.980 0.965 0.984 0.944
M14 1.000 1.000 1.000 1.000
M15 1.000 1.000 1.000 1.000
M16 1.000 1.000 1.000 1.000
M17 0.946 0.894 0.989 0.920
M18 0.998 0.991 1.000 0.995

conservative than the classical Bonferroni or Šidák procedures, especially when several highly correlated
test statistics are involved. It also yields the same critical values as the multiple testing procedure of
Benjamini and Hochberg (1995), which controls the so-called false discovery rate (i.e., the expected
proportion of erroneous rejections among all rejections) at level α.

In Table 2 we report Monte Carlo estimates of the probability that at least one of the tests under
consideration rejects the null hypothesis of linearity at the 0.05 level (whenT = 500). CaseA refers to the
situation when linearity is tested using the statistics Q12(m), Q21(m), and Q22(m) withm = �lnT
 = 6
(N = 3); in Case B linearity is tested using Q12(m), Q21(m), Q22(m) and six di�erent values of m,
namely m ∈ {1, . . . , 6} (N = 18). The advantage of adjusting for multiplicity in testing is immediately
evident. Using unadjusted P-values, the probability that one or more of the tests will erroneously reject
the null hypothesis under M1–M5 ranges from 0.14 to 0.29. By contrast, the multiple testing procedures
generally have an overall Type I error probability that is quite close to the nominal 0.05 level (in spite
of the fact that they do not account for dependence among the individual test statistics). Moreover, the
protection against an excessive overall Type I error probability is not achieved at the cost of a systematic
loss of the ability of the tests to reject correctly the linearity hypothesis under M6–M18.

4. Empirical application

In this section, portmanteau tests for linearity are applied to a set of weekly stock returns, spanning the
period 1993–2007 (781 observations), for 100 companies from the Standard & Poor’s 500 Composite
index. The selected series are part of the data set analyzed by Kapetanios (2009) and are such that the
hypothesis of strict stationarity cannot be rejected for any of them (at 5% signi�cance level). The presence
of nonlinearity in asset returns has important implications for, inter alia, pricing, risk management, and
forecasting.

As in Section 3, we test for neglected nonlinearity in an AR model for each time series, the order of
which is determined by minimizing the BIC over the range {0, 1, . . . , �8(T/100)1/4
}. The asymptotic
P-values for tests based on Q12(m), Q21(m), and Q22(m), with m = �lnT
, are reported in Table 3.
In order to guard against the danger of overstating the signi�cance of nonlinearity because of the
use of three di�erent tests, we also report the P-values of the individual test statistics adjusted for
multiplicity using the methods of Simes (1986) and Benjamini and Hochberg (1995). In the notation
of Section 3.6, the Benjamini–Hochberg adjusted P-values are computed as P̌(i) = min{NP(i)/i, P̌(i+1)}
for i ∈ {1, . . . ,N − 1} and P̌(N) = P(N).
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Table 3. Unadjusted and multiplicity-adjusted P-values.

Unadjusted Simes Benjamini-Hochberg AR
P-values P-values P-values order

Company Q12 Q21 Q22 Q12 Q21 Q22 Q12 Q21 Q22

Alcoa Inc 0.20 0.00 0.00 0.20 0.01 0.00 0.20 0.01 0.00 1
Apple Inc. 0.01 0.70 0.47 0.02 0.70 0.70 0.02 0.70 0.70 2
Adobe Systems Inc 0.21 0.01 0.00 0.21 0.01 0.00 0.21 0.01 0.00 1
Analog Devices Inc 0.07 0.00 0.00 0.07 0.00 0.00 0.07 0.00 0.00 1
Archer-Daniels-Midland 0.56 0.99 0.04 0.85 0.99 0.11 0.85 0.99 0.11 1
Autodesk Inc 0.10 0.19 0.01 0.15 0.19 0.02 0.15 0.19 0.02 1
American Electric Power 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
AES Corp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
AFLAC Inc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Allergan Inc 0.04 0.09 0.00 0.06 0.09 0.00 0.06 0.09 0.00 1
American Intl Group Inc 0.03 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00 1
Aon plc 0.02 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 1
Apache Corporation 0.37 0.02 0.00 0.37 0.03 0.00 0.37 0.03 0.00 1
Anadarko Petroleum 0.73 0.05 0.00 0.73 0.08 0.00 0.73 0.08 0.00 1
Avon Products 0.19 0.00 0.00 0.19 0.00 0.00 0.19 0.00 0.00 1
Avery Dennison Corp 0.00 0.12 0.00 0.01 0.12 0.00 0.01 0.12 0.00 1
American Express Co 0.24 0.00 0.00 0.24 0.00 0.00 0.24 0.00 0.00 1
Bank of America Corp 0.21 0.00 0.00 0.21 0.00 0.00 0.21 0.00 0.00 1
Baxter International Inc. 0.06 0.00 0.28 0.09 0.00 0.28 0.09 0.00 0.28 1
BBT Corporation 0.58 0.01 0.00 0.58 0.02 0.00 0.58 0.02 0.00 1
Best Buy Co. Inc. 0.75 0.00 0.00 0.75 0.00 0.00 0.75 0.00 0.00 1
Bard (C.R.) Inc. 0.71 0.03 0.01 0.71 0.05 0.02 0.71 0.05 0.02 1
Becton Dickinson 0.24 0.07 0.00 0.24 0.11 0.00 0.24 0.11 0.00 1
Franklin Resources 0.38 0.00 0.00 0.38 0.00 0.00 0.38 0.00 0.00 1
Brown-Forman Corp 0.29 0.00 0.04 0.29 0.00 0.06 0.29 0.00 0.06 1
Baker Hughes Inc 0.24 0.00 0.00 0.24 0.00 0.00 0.24 0.00 0.00 1
The Bank of NY Mellon 0.23 0.00 0.00 0.23 0.00 0.00 0.23 0.00 0.00 1
Ball Corp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Boston Scienti�c 0.95 0.01 0.01 0.95 0.02 0.04 0.95 0.02 0.02 1
Cardinal Health Inc. 0.83 0.05 0.02 0.83 0.08 0.05 0.83 0.08 0.05 3
Caterpillar Inc. 0.08 0.05 0.01 0.08 0.07 0.04 0.08 0.07 0.04 1
Chubb Corp. 0.01 0.04 0.00 0.02 0.04 0.00 0.02 0.04 0.00 1
Coca-Cola Enterprises 0.26 0.31 0.06 0.39 0.31 0.18 0.31 0.31 0.18 1
Carnival Corp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
CIGNA Corp. 0.24 0.00 0.70 0.36 0.00 0.70 0.36 0.00 0.70 1
Cincinnati Financial 0.00 0.63 0.00 0.00 0.63 0.00 0.00 0.63 0.00 1
Clorox Co. 0.18 0.00 0.00 0.18 0.00 0.00 0.18 0.00 0.00 1
Comerica Inc. 0.39 0.00 0.01 0.39 0.00 0.02 0.39 0.00 0.02 1
CMS Energy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2
CenterPoint Energy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Cabot Oil and Gas 1.00 0.02 0.00 1.00 0.03 0.00 1.00 0.03 0.00 1
ConocoPhillips 0.18 0.38 0.49 0.53 0.57 0.49 0.49 0.49 0.49 1
Campbell Soup 0.86 0.00 0.00 0.86 0.00 0.00 0.86 0.00 0.00 1
CSX Corp. 0.08 0.04 0.00 0.08 0.06 0.01 0.08 0.06 0.01 1
CenturyLink Inc 0.10 0.00 0.05 0.10 0.01 0.08 0.10 0.01 0.08 1
Cablevision Corp. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Chevron Corp. 0.04 0.33 0.01 0.06 0.33 0.03 0.06 0.33 0.03 1
Dominion Resources 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Deere and Co. 0.86 0.04 0.00 0.86 0.07 0.00 0.86 0.07 0.00 2
D. R. Horton 0.39 0.02 0.01 0.39 0.03 0.04 0.39 0.03 0.03 1
Danaher Corp. 0.01 0.05 0.00 0.02 0.05 0.00 0.02 0.05 0.00 3
Walt Disney Co. 0.62 0.05 0.01 0.62 0.07 0.04 0.62 0.07 0.04 1
Dow Chemical 0.19 0.09 0.00 0.19 0.14 0.00 0.19 0.14 0.00 1
Duke Energy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Ecolab Inc. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Equifax Inc. 0.13 0.23 0.12 0.20 0.23 0.37 0.20 0.23 0.20 1
Edison Int’l 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 2
EMC Corp. 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 1
Emerson Electric 0.31 0.03 0.00 0.31 0.04 0.00 0.31 0.04 0.00 1
Equity Residential 0.45 0.22 0.00 0.45 0.34 0.00 0.45 0.34 0.00 1

(Continued)
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Table 3. Continued.

Unadjusted Simes Benjamini-Hochberg AR
P-values P-values P-values order

Company Q12 Q21 Q22 Q12 Q21 Q22 Q12 Q21 Q22

EQT Corporation 0.20 0.00 0.00 0.20 0.00 0.00 0.20 0.00 0.00 1
Eaton Corp. 0.47 0.22 0.40 0.47 0.67 0.59 0.47 0.47 0.47 1
Entergy Corp. 0.01 0.11 0.00 0.01 0.11 0.00 0.01 0.11 0.00 1
Exelon Corp. 0.45 0.43 0.02 0.45 0.64 0.05 0.45 0.45 0.05 1
Ford Motor 0.01 0.15 0.00 0.01 0.15 0.00 0.01 0.15 0.00 1
Fastenal Co 0.28 0.06 0.03 0.28 0.09 0.08 0.28 0.09 0.08 1
Family Dollar Stores 0.86 0.05 0.00 0.86 0.08 0.00 0.86 0.08 0.00 1
FedEx Corporation 0.04 0.17 0.00 0.06 0.17 0.00 0.06 0.17 0.00 1
Fiserv Inc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3
Fifth Third Bancorp 0.04 0.00 0.00 0.04 0.01 0.00 0.04 0.01 0.00 1
Fluor Corp. 0.00 0.03 0.12 0.00 0.04 0.12 0.00 0.04 0.12 1
Forest Laboratories 0.03 0.08 0.64 0.09 0.12 0.64 0.09 0.12 0.64 1
Frontier Commun. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Gannett Co. 0.64 0.01 0.00 0.64 0.01 0.00 0.64 0.01 0.00 1
General Dynamics 0.50 0.01 0.00 0.50 0.02 0.00 0.50 0.02 0.00 1
General Electric 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
General Mills 0.98 0.87 0.98 0.98 1.00 1.00 0.98 0.98 0.98 1
Genuine Parts 0.02 0.02 0.00 0.02 0.03 0.00 0.02 0.02 0.00 1
Gap (The) 0.81 0.00 0.00 0.81 0.00 0.00 0.81 0.00 0.00 1
Grainger Inc. 0.37 0.05 0.00 0.37 0.07 0.00 0.37 0.07 0.00 2
Halliburton Co. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1
Harman Int’l Ind. 0.63 0.35 0.54 0.63 1.00 0.81 0.63 0.63 0.63 2
Hasbro Inc. 0.16 0.14 0.34 0.24 0.42 0.34 0.24 0.24 0.34 1
Huntington Bancshares 0.12 0.01 0.00 0.12 0.02 0.00 0.12 0.02 0.00 1
Health Care REIT 0.98 0.11 0.00 0.98 0.16 0.00 0.98 0.16 0.00 1
Home Depot 0.35 0.07 0.00 0.35 0.11 0.00 0.35 0.11 0.00 1
Hess Corporation 0.47 0.28 1.00 0.71 0.85 1.00 0.71 0.71 1.00 1
Harley-Davidson 0.07 0.00 0.74 0.11 0.00 0.74 0.11 0.00 0.74 1
Honeywell Int’l Inc. 0.32 0.13 0.68 0.48 0.40 0.68 0.48 0.40 0.68 1
Hewlett-Packard 0.16 0.01 0.00 0.16 0.01 0.00 0.16 0.01 0.00 1
Block H and R 0.13 0.02 0.00 0.13 0.02 0.00 0.13 0.02 0.00 1
Hormel Foods Corp. 0.46 0.09 0.02 0.46 0.14 0.06 0.46 0.14 0.06 1
The Hershey Company 1.00 0.20 0.61 1.00 0.61 0.91 1.00 0.61 0.91 1
Intel Corp. 0.92 0.25 0.00 0.92 0.38 0.00 0.92 0.38 0.00 1
International Paper 0.17 0.26 0.00 0.26 0.26 0.00 0.26 0.26 0.00 1
Interpublic Group 0.56 0.00 0.00 0.56 0.00 0.00 0.56 0.00 0.00 1
Ingersoll-Rand PLC 0.47 0.05 0.00 0.47 0.07 0.00 0.47 0.07 0.00 1
Johnson Controls 0.03 0.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00 1
Jacobs Eng. Group 0.13 0.01 0.20 0.19 0.02 0.20 0.19 0.02 0.20 1
Johnson and Johnson 0.13 0.00 0.00 0.13 0.00 0.00 0.13 0.00 0.00 1

Using unadjusted test P-values, evidence against linearity is found in 82 stock returns (at 5%
signi�cance level) on the basis of the Q22 test. This arguably is not a very surprising �nding since
conditional heteroskedasticity is a characteristic feature of many asset returns. Linearity is also rejected
by at least one of the cross-correlation Q12/Q21 tests in 75 cases. Using multiplicity-adjusted P-values,
evidence against linearity is found by at least one of the three tests in 85% of stock returns (at 5%
signi�cance level). We conclude, therefore, that the vast majority of the stock returns considered in our
analysis exhibit nonlinear features which cannot be captured by a linear model with i.i.d. noise.

5. Summary

This article considered portmanteau tests for linearity of stationary time series based on generalized
correlations of residuals. The proposed tests are easy to implement, have a chi-square large-sample null
distribution, and good size and power properties in �nite samples. The simulation results indicated
that the cross-correlation tests Q12 and Q21 are useful in identifying various types of nonlinearity and
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are generally more powerful than the popular Q22 test based on squared-residual autocorrelations. An
application to time series of stock returns illustrated the practical use of the tests.
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