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ABSTRACT
The problem of assessing symmetry about an unspecified center of the one-dimensional marginal distri-
bution of a strictly stationary random process is considered. A well-known U-statistic based on data triples
is used to detect deviations from symmetry, allowing the underlying process to satisfy suitable mixing or
near-epoch dependence conditions. We suggest using subsampling for inference on the target parameter,
establish the asymptotic validity of the method in our setting, and discuss data-driven rules for selecting
the size of subsamples. The small-sample properties of the proposed inferential procedures are examined
by means of Monte Carlo simulations. Applications to time series of output growth and stock returns are
also presented.
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1. Introduction

Assessing whether a probability distribution is symmetric about
a specified or unspecified center is a problem that has attracted
considerable attention. This is not surprising in view of the
fact that symmetry plays a fundamental role in many statistical
inference and model identification procedures. A variety of
nonparametric and robust inferential procedures rely heavily
on the assumption of symmetry and tend to perform rather
poorly when the assumption fails (see, e.g., Maronna et al.
2019). Symmetry is also important in terms of the definition
and estimation of location since the center of symmetry of a
distribution is its only natural location parameter, and is a loca-
tion parameter that is robustly or even adaptively estimable (e.g.,
Beran 1978). Moreover, symmetry is known to reduce the error
of large-sample approximations to the sampling distributions
of many statistics and permits the construction of resampling-
based inferential procedures which are considerably more accu-
rate than those that rely on first-order asymptotic theory (e.g.,
Jing 1995; Zhilova 2020). It is not uncommon, therefore, for data
transformations that yield symmetry, or approximate symmetry,
to be used prior to the application of many classical statistical
procedures in cases where asymmetry is found. It is also worth
noting that some well-known problems, such as, for instance,
evaluating the lack of a treatment effect via paired compar-
isons (e.g., Lehmann and Romano 2005, sec. 6.8) or detecting
time-reversibility of a random process (e.g., Chen, Chou, and
Kuan 2000; Psaradakis 2008), may be reformulated in terms of
assessing distributional symmetry of appropriately transformed
data.

In the context of model building, detecting possible devia-
tions from symmetry of the one-dimensional marginal distribu-
tion of the data is a useful model checking tool, for asymmetry
implies that certain families of parametric models are invalid
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candidate models. For example, the use of autoregressive mov-
ing average (ARMA) models or nonlinear Markovian models
with skew-symmetric autoregressive functions (see Pemberton
and Tong 1981), whose independent, identically distributed
(iid) driving noise has a symmetric distribution, is inappropriate
when the marginal distribution of the underlying process is
asymmetric. In such time-series models, symmetry, or lack of
it, also has implications for inference. In a causal ARMA model
with iid noise, for example, robust estimation is possible when
the noise distribution and, in consequence, the one-dimensional
marginal distribution of the observed data, is symmetric (see,
e.g., Muler, Peña, and Yohai 2009). In a geometrically ergodic
nonlinear autoregressive model with a skew-symmetric condi-
tional mean function and iid noise, to give another example,
symmetry of the noise, and the implied symmetry of the one-
dimensional stationary distribution of the data, permit the con-
struction of adaptive estimators of the parameters (see Koul and
Schick 1997).

Assessing deviations from symmetry can also be useful as a
way of evaluating the empirical validity of different hypotheses
and theoretical models in so far as they rely on or imply dis-
tributional symmetry. In finance, for instance, symmetry is an
implicit or explicit assumption in some commonly used mod-
els, including the Sharpe–Lintner asset-pricing model and the
Black–Scholes option-pricing model. However, many studies
have reported empirical findings of asymmetry in the distri-
butions of financial data, including the distributions of indi-
vidual asset returns and portfolio returns. Such findings have
significant implications for portfolio selection, risk manage-
ment and asset pricing (see Conine and Tamarkin 1981; Chun-
hachinda et al. 1997; Mitton and Vorkink 2007, inter alia). More-
over, they are incompatible with the assumption of elliptically
distributed multivariate asset returns that underlies much of
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classical mean–variance analysis of portfolio choice and equi-
librium asset pricing (see, e.g., Ingersoll 1987). As a result, the
adequacy of standard financial models that rely on symmetry
assumptions has been questioned and attempts have been made
to extend and modify such models to incorporate asymmetries
(e.g., Jurczenko, Maillet, and Negrea 2004; Chabi-Yo 2012).
Another leading example from economics in which symme-
try is a central issue relates to the long-standing question of
whether real economic variables behave asymmetrically over
the business cycle. Following DeLong and Summers (1986)
and Sichel (1993), a considerable body of work has evolved
in which different types of cyclical asymmetry are identified
via the distributional asymmetry of relevant economic vari-
ables. The empirical evidence in favor of cyclical asymmetry
that has emerged necessitates the development of equilibrium
models of the business cycle in which asymmetries are gen-
erated endogenously (see, e.g., Nieuwerburgha and Veldkamp
2006; McKay and Reis 2008), and such asymmetries should
also be accounted for in the calibration exercises that are used
extensively in dynamic macroeconomics. Findings of business-
cycle asymmetries must also be taken into consideration when
developing empirical models since they impose restrictions on
the types of parametric models that may be used as valid sta-
tistical representations of economic time series, ruling out, for
example, ARMA models with symmetrically distributed noise.
Needless to say, in applications such as these involving time-
series data, it is imperative that statistical inference on symmetry
be based on procedures which are robust to deviations from
the independence assumption that is maintained in the vast
majority of the literature on testing symmetry.

With this in mind, the present article focuses on the problem
of assessing symmetry of the one-dimensional marginal distri-
bution of dependent data. Specifically, we consider using a U-
statistic involving triples of observations to detect deviations
from symmetry, without specifying or estimating the center of
symmetry. Such statistics, which may be thought of as estimators
of an index of skewness of the underlying distribution, have been
previously used by Davis and Quade (1978) and Randles et al.
(1980) to develop tests for symmetry under the assumption that
the observed data are realizations of iid random variables. Our
objective in this article is to extend triples-based procedures to
the case of strictly stationary sequences of weakly dependent
random variables, thus expanding considerably the range of
datasets with which such procedures may be validly used.

Alternative approaches to detecting asymmetry of the
marginal distribution of dependent data (in the case of an
unspecified location) include, among others, approaches based
on moment conditions (Bai and Ng 2005; Psaradakis 2016), dis-
tribution distance measures (Psaradakis 2003; Maasoumi and
Racine 2009), the characteristic function (Leucht 2012), and
order statistics (Psaradakis and Vávra 2015). In a recent study,
Psaradakis and Vávra (2019) investigated the properties of tests
for symmetry based on some of these approaches, as well as
of tests which have been designed for iid data. As a way of
robustifying tests to deviations from the assumption of indepen-
dence and/or controlling their levels for a fixed sample size, they
explored the possibility of using resampling procedures appro-
priate for dependent data to construct critical regions for the
tests. In a comparison of 20 well-known tests for symmetry, the

majority of them developed under iid conditions, a bootstrap-
assisted version of a test based on a U-statistic involving data
triples was found to be a serious competitor to all other tests in
the presence of serial correlation in the data, providing the best
overall performance in terms of finite-sample level accuracy and
power. The results of Eubank, Iariccia, and Rosenstein (1992),
under iid conditions, also suggest that the triples test is the test
of choice against unimodal asymmetric alternatives. The focus
in the present article on triples-based inferential procedures is
motivated in part by these findings.

Under suitable regularity conditions, the triples U-statistic
is shown to have a Gaussian asymptotic distribution for a large
class of strictly stationary random processes that includes abso-
lutely regular processes, strongly mixing processes, and near-
epoch dependent functionals of absolutely regular processes.
However, unless the infinite-dimensional distributions of such
processes are fully specified, the asymptotic variance of the
triples statistic is unknown. Rather than relying on a Gaussian
asymptotic approximation for inference purposes, we suggest
to use the model-free subsampling methodology of Politis and
Romano (1994a) to approximate the distribution of the triples
U-statistic and to construct confidence intervals and/or hypoth-
esis tests for the target parameter. The subsampling method may
also be used to estimate the asymptotic variance of the triples U-
statistic. The basic idea of subsampling is to treat overlapping
blocks of adjacent observations as replicates of the original
data structure, compute the statistic of interest (in our case the
triples U-statistic) over such ‘subsamples’, and use the subsample
replicates of the statistic to approximate its distribution and/or
estimate its variance nonparametrically. As is clear from the
thorough review of subsampling by Politis, Romano, and Wolf
(1999), the method has wide applicability, is easy to implement
in practice, and its asymptotic validity often requires little more
than the statistic of interest having a nondegenerate asymptotic
distribution (when suitably normalized).

The remainder of the article is organized as follows. Sec-
tion 2 introduces the U-statistic based on triples and obtains
its asymptotic distribution for large classes of weakly dependent
random processes. Section 3 details how subsampling may be
used to construct confidence intervals and/or hypotheses tests
for the parameter of interest, establishes the asymptotic validity
of the method, and discusses data-driven rules for selecting the
subsample size. Section 4 examines the finite-sample properties
of the proposed inferential procedures by means of Monte Carlo
experiments. Section 5 discusses applications to economic and
financial data. Section 6 summarizes and concludes. Proofs are
collected in Appendix A and detailed simulation results are
reported in Appendix B.

2. Triples Statistic and Its Asymptotic Distribution

Let Xn := {X1, X2, . . . , Xn} be an observable segment of a real-
valued, strictly stationary random process X := {Xt , t ∈ Z}
with continuous one-dimensional marginal distribution func-
tion F(x) := P(X0 � x), x ∈ R. The objective is to assess
whether F is symmetric about some unspecified center μ ∈ R,
that is,

F(μ − x) + F(μ + x) = 1, x ∈ [0, ∞), (1)



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 3

or, equivalently, that X0 − μ and μ − X0 are identically dis-
tributed. (As usual, R, Z, N0, and N are used throughout to
denote the sets of real numbers, integers, nonnegative integers,
and positive integers, respectively).

Similarly to Randles et al. (1980), we consider identifying
departures from (1) by means of a U-statistic

Tn := 6
n(n − 1)(n − 2)

∑∑∑
1�t1<t2<t3�n

ψ(Xt1 , Xt2 , Xt3), n � 3,

whose kernel ψ : R3 → R is given by

ψ(x1, x2, x3) := 1
3
{

sgn(x1 + x2 − 2x3) + sgn(x1 + x3 − 2x2)

+sgn(x2 + x3 − 2x1)
}

,

where sgn(x) := x−1 |x| for x �= 0 and sgn(0) := 0. An
equivalent formulation was considered by Davis and Quade
(1978). If X is an iid sequence, then E(Tn) = E[ψ(X1, X2, X3)] =
0 whenever F satisfies (1).

In the sequel, we relax the independence assumption main-
tained in Davis and Quade (1978) and Randles et al. (1980),
and allow X to be a weakly dependent process satisfying suitable
mixing conditions. As measures of the degree of dependence, we
use the Rozanov–Volkonskii coefficients of absolute regularity

β(k) := E

(
sup

A∈F∞
k

∣∣P(A|F0−∞) − P(A)
∣∣) , k ∈ N,

and Rosenblatt’s strong-mixing coefficients

α(k) := sup
A′∈F0−∞,A∈F∞

k

∣∣P(A′ ∩ A) − P(A′)P(A)
∣∣ , k ∈ N,

where F0−∞ and F∞
k denote the σ -fields generated by {Xt , t �

0} and {Xt , t � k}, respectively. The (strictly stationary) process
X is said to be absolutely regular if β(k) → 0 as k →
∞, and strongly mixing if α(k) → 0 as k → ∞. Under
suitable conditions, the strictly stationary, causal solutions of
many commonly used time-series models are known to be
absolutely regular or strongly mixing (often with geometrically
decaying mixing coefficients); examples include ARMA models,
nonlinear models with an ergodic Markovian structure, linear
state-space models, autoregressive conditionally heteroscedastic
models, and stochastic volatility models (see, e.g., Doukhan
1994, sec. 2.4). Because 2α(k) � β(k) � 1 for all k ∈ N, if X is
absolutely regular, then it is also strongly mixing (and, therefore,
ergodic). The case where X is q-dependent, for some q ∈ N0, is
a special case in which β(k) = α(k) = 0 for all k > q.

In addition to absolutely regular and strongly mixing pro-
cesses, we also consider the case where X is a near-epoch
dependent (two-sided) functional of a mixing sequence. More
specifically, for a real-valued, strictly stationary random process
V := {Vt , t ∈ Z} and a measurable function f : RZ → R, let
X be such that Xt = f ({Vt+j, j ∈ Z}) for each t ∈ Z. If X0 is
integrable and there exists a sequence of nonnegative constants
{ξ(m), m ∈ N0} such that ξ(m) → 0 as m → ∞ and

E(|X0 − E(X0|Gm−m)|) � ξ(m), m ∈ N0,

whereGm−m denotes the σ -field generated by {Vt , −m � t � m},
then X is said to be near-epoch dependent on V (in L

1-norm),

or an 1-approximating functional of V, with approximating
constants {ξ(m)}. Restricting f in this fashion so that it can
be sufficiently well approximated by a finite-variate function
is an idea that goes back to Ibragimov (1962). Under suitable
regularity conditions, the strictly (and/or second-order) station-
ary, causal solutions of many time-series models are near-epoch
dependent, including ARMA models, autoregressive condition-
ally heteroscedastic models, nonlinear autoregressive models,
and nonlinear models that admit a Volterra series expansion,
as are observables that arise in many dynamical systems (see
Borovkova, Burton, and Dehling 2001; Davidson 2002, inter
alia). Near-epoch dependence has the advantage of holding
in cases where absolute regularity or strong mixing may not.
For example, a causal linear process with absolutely summable
coefficients and zero-mean iid noise is near-epoch dependent on
the noise sequence; in comparison, strong mixing or absolute
regularity additionally require the process to be invertible and
the one-dimensional marginal distribution of the noise to have
a sufficiently smooth Lebesgue density (see Doukhan 1994, sec.
2.3.1). In what follows, {β̃(k), k ∈ N} denote the coefficients of
absolute regularity of the base process V (defined analogously
to those of X), and it is assumed that β̃(k) → 0 as k → ∞ at
an appropriate rate. Hence, the near-epoch dependent process
X is ergodic and strictly stationary but need not be absolutely
regular or strongly mixing.

In view of the boundedness of the kernel ψ , the strong law
of large numbers for U-statistics due to Aaronson et al. (1996,
Theorem U) ensures that, under absolute regularity of X, Tn is
strongly consistent for the parameter

θ := E[ψ(Y1, Y2, Y3)] = P(Y1 + Y2 − 2Y3 > 0)

− P(Y1 + Y2 − 2Y3 < 0),

where Y1, Y2 and Y3 are independent random variables, inde-
pendent of X, with common distribution function F. This is
also true if X is strongly mixing or near-epoch dependent on
an absolutely regular process, provided F is such that the points
of discontinuity of ψ form a negligible set with respect to the
joint distribution of (Y1, Y2, Y3). Note that Tn is not necessarily
unbiased for θ under dependence; for example, E(Tn) = θ +
O((9n)−1/2) if β(k) = O(k−�) for some � � 1 (see Han (2018,
theor. 3.2)). The expectation of ψ(Y1, Y2, Y3) may be thought of
as an index of skewness for F, with θ = 0 for any continuous F
satisfying (1).

In order to consider the asymptotic distribution of Tn, it is
convenient to define a function ψ1 : R → R by

ψ1(x) := E[ψ(x, Y2, Y3)] − θ

=
∫ ∞

−∞

∫ ∞

−∞
ψ(x, y2, y3)dF(y2)dF(y3) − θ , x ∈ R,

and put

τ :=
∞∑

h=−∞
cov[ψ1(X0), ψ1(Xh)].

The two-sided series above is convergent to a nonnegative
sum under appropriate conditions on F and/or the dependence
structure of X. Such conditions can be found in Theorem 1,
which gives the limiting distribution (as n → ∞) of the cen-
tered and normed transform Sn := √

n(Tn − θ). Summability
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of the coefficients of absolute regularity of X is sufficient for Sn
to be asymptotically normal. Under the weaker strong-mixing
condition, a suitable polynomial rate of decay of the mixing
coefficients, finiteness of some related absolute moment of F,
and some smoothness of ψ with respect F are required. More
specifically, it will be assumed that there exist positive constants
M, M′, κ0 and κ ′

0 such that, for every κ ∈ (0, κ0) and κ ′ ∈ (0, κ ′
0),

and for any triple of integers (t1, t2, t3) such that −∞ < t1 <

t2 < t3 < ∞,

E

(
sup

‖(x1,x2,x3)−(Y1,Y2,Y3)‖�κ

|ψ(x1, x2, x3) − ψ(Y1, Y2, Y3)|
)
� Mκ , (2)

E

⎛
⎝ sup

|xt1 −X′
t1 |�κ ′

∣∣ψ(xt1 , Xt2 , X′
t3 ) − ψ(X′

t1 , Xt2 , X′
t3 )
∣∣
⎞
⎠ � M′κ ′, (3)

E

⎛
⎝ sup

|xt1 −X′
t1 |�κ ′

∣∣ψ(xt1 , Xt2 , Xt3 ) − ψ(X′
t1 , Xt2 , Xt3 )

∣∣
⎞
⎠ � M′κ ′, (4)

where ‖·‖ denotes the Euclidean vector norm and {X′
t , t ∈ Z}

are iid random variables that are independent of X and have
distribution function F. The variation conditions (2)–(4) may
be understood as a form of Lipschitz continuity of ψ with
respect to the distribution of X0 (see Fischer, Fried, and Wendler
2016). These conditions are also required under near-epoch
dependence, along with suitable polynomial rates of decay for
the approximating constants and for the coefficients of absolute
regularity of the base process.

Theorem 1. Suppose one of the following sets of conditions is
satisfied:

(i) X is absolutely regular with
∑∞

k=1 β(k) < ∞;
(ii) X is strongly mixing, E(|X0|γ ) < ∞ for some γ > 0,

α(k) = O(k−η) for some η > (2γ + 1)/γ , and (2)–(4)
hold;

(iii) X is near-epoch dependent on an absolutely regular pro-
cess V, β̃(k) = O(k−ν) and ξ(m) = O(m−ν−2) for some
ν > 1, and (2)–(4) hold.

Then, τ < ∞ and, if τ > 0, σ−1Sn → N (0, 1) in distribution
as n → ∞, where σ := 3

√
τ .

Remark 1. As an absolutely regular process may be considered
to be near-epoch dependent on itself, with ξ(m) = 0 for all
m � 0, part (iii) of Theorem 1 contains a version of part (i).
The reason for considering the absolutely regular case separately
is that the central limit theorem for Tn can be obtained under
weaker conditions than it is possible under the assumption of
near-epoch dependence.

If τ = 0 under the conditions of Theorem 1, then it is
easily verified that Sn → 0 in probability as n → ∞. In the
nondegenerate case where τ �= 0, although the distribution of Sn
is asymptotically normal, inference about the parameter θ based
on hypotheses tests or confidence sets is complicated by the fact
that the asymptotic variance σ 2 is unknown and depends on the
correlation structure of the underlying process X. We discuss
next how these difficulties may be overcome by using suitable
nonparametric estimators based on subsamples.

3. Subsampling-Based Inference

In this section, we consider the use of subsampling to estimate
the distribution function and asymptotic variance of Sn and to
construct confidence intervals (and hypotheses tests) for θ . We
establish the asymptotic validity of subsampling in our setting
and discuss data-driven procedures for selecting the subsample
size.

3.1. Subsampling Estimators and Asymptotic Validity

For a fixed sample size n and an integer � := �(n) satisfying
n > � � 3, let

T�,i := 6
�(� − 1)(� − 2)

∑∑∑
i�t1<t2<t3�i+�−1

ψ(Xt1 , Xt2 , Xt3),

i ∈ {1, 2, . . . , n − � + 1},
so that, for each i, T�,i is a replicate of Tn based on the subsample
{Xi, Xi+1, . . . , Xi+�−1}. The subsampling estimator of the dis-
tribution function of Sn is given by the empirical distribution
function associated with

√
�(T�,1−Tn), . . . ,

√
�(T�,n−�+1−Tn),

that is, by

Hn,�(x) := 1
n − � + 1

n−�+1∑
i=1

1
{√

�(T�,i − Tn) � x
}

,

x ∈ R,
where 1{A} denotes the indicator of an event A. The asymptotic
variance of Sn may be estimated by

σ̂ 2
n,� :=

∫ ∞

−∞
x2dHn,�(x) −

(∫ ∞

−∞
xdHn,�(x)

)2

= �

n − � + 1

n−�+1∑
i=1

T2
�,i − �

(
1

n − � + 1

n−�+1∑
i=1

T�,i

)2

.

These estimators are consistent under suitable dependence
conditions, provided the subsample size � diverges to infinity
with n but does so more slowly than n. The following is true
when X is absolutely regular or strongly mixing.

Theorem 2. Suppose conditions (i) or (ii) of Theorem 1 are
satisfied, n−1�(n) + �(n)−1 → 0 as n → ∞, and τ > 0.
Then: (a) supx∈R

∣∣Hn,�(x) − P (Sn � x)
∣∣ → 0 in probability as

n → ∞; (b) σ̂ 2
n,� → σ 2 in probability as n → ∞.

Remark 2. Without invoking the asymptotic normality of Sn in
Theorem 1, it can be shown that σ̂ 2

n,� → σ 2 in quadratic mean as
n → ∞, provided α(k) → 0 as k → ∞, E(S2

n) → σ 2 ∈ (0, ∞)

as n → ∞, {S4
n, n � 3} is uniformly integrable, and n−1�(n) +

�(n)−1 → 0 as n → ∞ (see Fukuchi 1999, theor. 1(a)).

The subsampling estimators Hn,� and σ̂ 2
n,� are also consistent

when X is near-epoch dependent on an absolutely regular pro-
cess, as long as, for each fixed x ∈ R, the indicator random
variables U�,i(x) := 1{S�,i � x}, i ∈ {1, 2, . . . , n − � + 1}, are
such that

1
n − � + 1

n−�∑
h=0

∣∣cov[U�,1(x), U�,1+h(x)]∣∣ → 0 as n → ∞,

(5)
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where S�,i := √
�(T�,i − θ) is a replicate of Sn based on the

subsample {Xi, Xi+1, . . . , Xi+�−1}.

Theorem 3. Suppose conditions (iii) of Theorem 1 are satisfied,
n−1�(n) + �(n)−1 → 0 as n → ∞, condition (5) holds, and
τ > 0. Then, the conclusions of Theorem 2 hold true.

Remark 3. Condition (5) is a mild memory condition for the
subsample quantities {U�,i(x)}, viewed as a process indexed
by i, requiring their autocovariances to be strongly Cesàro-
convergent to zero. Since near-epoch dependence is not nec-
essarily preserved by measurable transformations, obtaining
sufficient conditions for the limit (5) in terms of more primitive
conditions on the near-epoch dependence characteristics of X
is considerably more difficult than it is under strong-mixing
or absolute regularity. However, if the subsample replicates
{T�,i, 1 � i � n − � + 1} of Tn, viewed as a process indexed
by i, retain the near-epoch dependence on V, then, for a fixed �

and each fixed x ∈ R, {U�,i(x)} is itself near-epoch dependent
on V, provided the indicator functions of half-infinite intervals
(−∞, x] in R satisfy some suitable continuity condition with
respect to the distribution of S�,1. It suffices, for example, to
assume that the indicator function of (−∞, x] satisfies, uni-
formly in x ∈ R, an 1-continuity condition (see Borovkova,
Burton, and Dehling 2001, prop. 2.11) or a variation condition
(see Wendler 2011, lem. 3.5) with respect to the distribution
of S�,1 (these conditions hold under continuity and Lipschitz
continuity, respectively, of the distribution function of S�,1). The
covariance inequality in Borovkova, Burton, and Dehling (2001,
lem. 2.18(i)) then ensured that

∣∣cov[U�,1(x), U�,1+h(x)]∣∣ → 0 as
h → ∞, from which (5) follows by the convergence lemma of
Cesàro averages.

Theorems 2 and 3 justify the use of quantiles of Hn,� to con-
struct subsampling confidence intervals for θ . More specifically,
for any given δ ∈ (0, 1), an (approximate) level-(1 − δ) equal-
tailed, two-sided confidence interval for θ is given by

C(1)
n,�(δ) :=

[
Tn − n−1/2H−1

n,� (1 − δ/2), Tn − n−1/2H−1
n,� (δ/2)

]
,

(6)
where �−1(y) := inf{x ∈ R : �(x) � y} for an arbitrary
nondecreasing function � : R → R. Alternatively, an (approx-
imate) level-(1 − δ) symmetric, two-sided confidence interval
for θ can be obtained as

C(2)
n,�(δ) :=

[
Tn − n−1/2H̄−1

n,� (1 − δ), Tn + n−1/2H̄−1
n,� (1 − δ)

]
,

(7)
where H̄n,� is the subsampling estimator of the distribution
function of |Sn|, defined as

H̄n,�(x) := 1
n − � + 1

n−�+1∑
i=1

1
{√

�
∣∣T�,i − Tn

∣∣ � x
}

,

x ∈ [0, ∞).

Symmetric confidence intervals are known to have improved
coverage accuracy in many circumstances and can be shorter
than equal-tailed intervals (see Hall 1988; Politis, Romano, and
Wolf 1999, chap. 10).

The following result shows that the subsampling confidence
intervals defined in Equations (6) and (7) are consistent in level,
in the sense of having asymptotically correct coverage.

Corollary 1. Suppose the assumptions of Theorem 2 or Theo-
rem 3 are satisfied. Then, for s ∈ {1, 2} and any δ ∈ (0, 1),
P(C(s)

n,�(δ) 
 θ) → 1 − δ as n → ∞.

Another possibility for constructing a confidence interval for
θ is to rely on the subsampling variance estimator σ̂ 2

n,� and the
Gaussian asymptotic approximation to the distribution of Sn,
exploiting the fact that, under the conditions of Theorem 2 or
Theorem 3, σ̂−1

n,� Sn → N (0, 1) in distribution as n → ∞. A
two-sided confidence interval for θ , with asymptotic coverage
1 − δ, may thus be obtained as

C(3)
n,�(δ) := [

Tn + n−1/2σ̂n,��
−1(δ/2),

Tn − n−1/2σ̂n,��
−1(δ/2)

]
, (8)

where � denotes the distribution function of anN (0, 1) random
variable.

Remark 4. An alternative estimator of σ 2 that may be used in
place of σ̂ 2

n,� to construct a ‘Gaussian’ confidence interval like
(8) is

σ̃ 2
n,ω := 9

n−1∑
h=1−n

K(ω−1 |h|)
⎛
⎝n−1

n−|h|∑
t=1

ψ̃1(Xt)ψ̃1(Xt+|h|)

⎞
⎠ ,

where K : [0, ∞) → R is a bounded, measurable weighting
function with K(0) = 1, ω := ω(n) > 0 is a bandwidth
parameter such that n−1/2ω(n) + ω(n)−1 → 0 as n → ∞,
and ψ̃1 is the empirical analogue of ψ1 given by

ψ̃1(x) := n−2
n∑

t2=1

n∑
t3=1

ψ(x, Xt2 , Xt3)

− n−3
n∑

t1=1

n∑
t2=1

n∑
t3=1

ψ(Xt1 , Xt2 , Xt3), x ∈ R.

Estimators of this type were shown by Dehling et al. (2017) and
Fischer (2017) to be consistent (under near-epoch dependence
conditions stronger than those in Theorem 1). Their practical
use requires an appropriate choice of bandwidth ω for a fixed
sample size n, a problem not too dissimilar to choosing the
subsample size � for the estimator σ̂ 2

n,�. Since we are inter-
ested in subampling-based inference on θ , we will not consider
weighted-autocovariances estimators like σ̃ 2

n,ω here.

Remark 5. Although our discussion focuses primarily on confi-
dence intervals for θ (because, unlike tests, they are informative
about the degree of uncertainty associated with a point estimate
of θ), tests of hypotheses about θ can be easily constructed using
Equations (6)–(8). By the familiar duality between hypothesis
tests and confidence sets, an asymptotically level-δ equal-tailed
test for testing the null hypothesis θ = 0 versus the alternative
θ �= 0 rejects if, and only if, C(1)

n,�(δ) does not contain zero, that
is, if

√
nTn < H−1

n,� (δ/2) or
√

nTn > H−1
n,� (1−δ/2). Similarly, an

asymptotically level-δ symmetric test rejects if, and only if, zero
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is not a member of C(2)
n,�(δ), that is, if

√
n |Tn| > H̄−1

n,� (1 − δ).
The asymptotically level-δ test corresponding to C(3)

n,�(δ) rejects
when

√
n|σ̂−1

n,� Tn| > �−1(1 − δ/2).

Remark 6. A test of θ = 0 versus θ �= 0 is viewed in
Davis and Quade (1978) and Randles et al. (1980) as a test
of the symmetry hypothesis (1) against a general asymmetric
alternative corresponding to F(μ − x0) + F(μ + x0) �= 1 for
some x0 ∈ [0, ∞). Since θ = 0 is necessary but not sufficient
for (1) to hold, it is clear that a test that rejects for large values
of |Tn| cannot be consistent against asymmetric distributions
for which θ = 0. Randles et al. (1980) noted, however, that
such asymmetric distributions form a small class. Difficulties
of this kind are common to inferential procedures that rely
on a necessary condition for symmetry, as is also the case, for
instance, with tests based on empirical analogues of measures
of skewness involving the expectation of an odd, measurable
function of X0 − E(X0) (e.g., Bai and Ng 2005; Psaradakis 2016)
or the difference E(X0) − F−1(1/2) (e.g., Lyubchich et al. 2016).
The result in Kochar (1992, corol. 2.3) provides a characteriza-
tion of the class of continuous distribution functions for which
θ �= 0 and against which a test for symmetry based on Tn will be
consistent. Specifically, with F̃(x) := P(−X0 � x) = 1 − F(−x)

for x ∈ R, a sufficient condition for θ < 0 (θ > 0) is that F
strictly precedes (succeeds) F̃ in van Zwet’s convex-transform
order, in the sense that the function x �→ (F̃−1 ◦ F)(x) =
−F−1(1−F(x)) is strictly convex (concave) on the support of F.
It may, therefore, be more accurate to view a test based on Tn as
a test of symmetry of F (about an unspecified center) against the
alternative that F is more skewed to the right than F̃ (F strictly
succeeds F̃ in the convex-transform order) or vice versa. Note
that F being more skewed to the right (left) than F̃ is equivalent
to F being skewed to the right (left), in the sense that there exists
a symmetric distribution function on R which strictly precedes
(succeeds) F in the convex-transform order.

Remark 7. The univariate procedures discussed here also pro-
vide a means of assessing whether the common (marginal)
distribution of a strictly stationary sequence of Rp-valued (p ∈
N) random (column) vectors {Zt , t ∈ Z} is centrally symmetric
about some unspecified point μ ∈ R

p, that is, whether Z0 − μ

and μ − Z0 are identically distributed. This may be done by
exploiting the fact that central symmetry of the distribution
of Z0 about μ is equivalent to symmetry about the origin of
the distribution of aᵀ(Z0 − μ) for any fixed a ∈ R

p with
‖a‖ = 1, where aᵀ denotes the transpose of a (e.g., Zuo and
Serfling 2000, lem. 2.1). Central symmetry of Z0 may, therefore,
be assessed by using a U-statistic based on triples of {aᵀZt} for
some appropriately chosen a (e.g., triples of the least symmetric
one-dimensional projection aᵀZt). Such an approach to detect-
ing deviations from symmetry of dependent multivariate data
will be investigated in detail elsewhere.

3.2. Choice of Subsample Size

An important issue that arises in the use of subsampling tech-
niques in practice is the selection of a reasonable subsample size
� := �(n) for a given sample size n, a problem akin to that

of selecting the block length for blockwise bootstrap methods
(see, e.g., Lahiri 2003, chap. 7). The choice of � matters because
the size of subsamples can affect significantly the performance
of subsampling estimators in finite samples. Unfortunately, the
asymptotic results in Theorems 2 and 3 give no guidance for the
selection of an appropriate subsample size beyond the require-
ment that it grows at a slower rate than n. To circumvent this
difficulty, we consider here two data-driven methods for choos-
ing a subsample size �∗ := �∗(n) from a collection of candidate
subsample sizes �n := {� ∈ N : 2 < �1(n) � � � �2(n) < n},
based on the discussion in Politis, Romano, and Wolf (1999, Sec.
9.3), namely a “calibration” method and a “minimum volatility”
method.

The basic idea behind the calibration method is to adjust the
subsample size so that a subsampling confidence interval of a
fixed nominal level has coverage probability close to the nominal
level in a sample of a given size. The procedure is described
formally in Algorithm 1.

Algorithm 1 (Calibration).

1.1. For a large B ∈ N and some 0 < l < n, generate pseudo-
samples X∗b

n := {X∗b
n,1, . . . , X∗b

n,n}, b ∈ {1, 2, . . . , B}, of size n
by means of a block-resampling scheme based on Xn, with
(expected) block length l.

1.2. For a fixed δ ∈ (0, 1), each b ∈ {1, 2, . . . , B} and each
� ∈ �n, construct a level-(1 − δ) subsampling confidence
interval [I∗b

n,�,1, I∗b
n,�,2] for θ using X∗b

n in place of Xn.
1.3. For each � ∈ �n, compute π̂n,δ(�) := B−1 ∑B

b=1 1{I∗b
n,�,1 �

Tn � I∗b
n,�,2}.

1.4. Set �∗ = arg min�∈�n

∣∣π̂n,δ(�) − (1 − δ)
∣∣.

There are several block-resampling schemes that may be used
to construct pseudo-samples X∗b

n from a model-free approxi-
mation to the distribution of Xn (see, e.g., Lahiri 2003, pp. 25–
36). These are required in order to obtain an estimate π̂n,δ of a
calibration function � �→ πn,δ(�), where πn,δ(�) is the coverage
probability of a confidence interval for θ with nominal level 1−δ

based on subsamples of size �. In Sections 4 and 5, we rely on
the resampling scheme associated with the stationary bootstrap
of Politis and Romano (1994b). This amounts to constructing
each X∗b

n from overlapping blocks of adjacent observations
from the periodically extended sequence {Xt(mod n), t ∈ N},
with X0 = Xn, the random length of each block being geo-
metrically distributed on N with mean l. Unlike other block-
resampling schemes, the stationary bootstrap produces pseudo-
observations X∗b

n that are strictly stationary (conditionally on
Xn) and is less sensitive to misspecification of the (expected)
block length. The asymptotic validity of the stationary bootstrap
for U-statistics (of degree 2) was established by Hwang and Shin
(2015) under strong-mixing conditions. In the implementation
of the procedure, we set l−1 = min{|2ρ̂n/(1−ρ̂2

n)|−2/3n−1/3, 1},
where ρ̂n is the lag-1 sample autocorrelation of Xn (see Carlstein
1986, p. 1178). Since the choice of the expected block length is of
the second-order importance in the context of calibration, this
approach provides a simple data-dependent choice for l. In order
to keep the cost of computations at a manageable level, we set
B = 100 in the simulations in Section 4, while B = 1000 is used
for the real-data applications in Section 5.
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The minimum-volatility approach to choosing �∗ amounts
to constructing subsampling confidence intervals of a fixed
nominal level for different subsample sizes and then identifying
a region where the intervals do not exhibit substantial variability.
A formal description of the procedure in our setting is given in
Algorithm 2.

Algorithm 2 (Minimum Volatility).

2.1. For a fixed δ ∈ (0, 1), a small d ∈ N, and for each integer �

such that 2 < �1(n) − d � � � �2(n) + d < n, construct a
level-(1 − δ) subsampling confidence interval [In,�,1, In,�,2]
for θ .

2.2. For each � ∈ �n, compute the volatility index

Dn,δ(�) :=
2∑

s=1

⎧⎨
⎩ 1

2d

d∑
j=−d

(
In,�+j,s − Īn,�,s

)2

⎫⎬
⎭

1/2

,

where Īn,�,s := (1 + 2d)−1 ∑d
j=−d In,�+j,s.

2.3. Set �∗ = arg min�∈�n Dn,δ(�).

Minimizing the volatility of the endpoints of subsampling
confidence intervals, as in Algorithm 2, is arguably more attrac-
tive computationally than the calibration approach in Algo-
rithm 1, especially in the context of Monte Carlo simulations,
because it does not require the use of a bootstrap procedure
to estimate confidence interval coverage. Since the algorithm is
relatively insensitive to the choice of d, we set d = 2 in Sections 4
and 5, following the recommendation in Politis, Romano, and
Wolf (1999, pp. 199–200) and Romano and Wolf (2001, p. 1297).

Remark 8. In Algorithms 1 and 2, and in their implementations
in Sections 4 and 5, we consider all integers in the interval
[�1(n), �2(n)] as candidate subsample sizes. An appropriate sub-
set of �n may alternatively be used in order to reduce the
computational burden. Additionally, the algorithm given in
Monahan (1984) may be used to reduce the complexity of
computing the values of triples U-statistics, while algorithms
analogous to those discussed in Giacomini, Politis, and White
(2013) could be useful in the context of Monte Carlo experi-
ments, especially when calibration is required.

We end this subsection by noting that, under appropriate
conditions, the conclusions of Theorem 2(a) and Corollary 1
remain valid when a random (data-dependent) subsample size
such as �∗ is used instead of a fixed subsample size. Inspection
of the proof of Theorem 4.1 of Politis, Romano, and Wolf (2001)
shows that, for the consistency results to go through in this case,
it suffices that, in addition to the assumptions already needed to
guarantee asymptotic normality of Sn (with σ > 0): (i) �n is
such that, as n → ∞, �1(n) → ∞ and n−1�2(n) → 0; (ii) for
each fixed x ∈ R and every ε > 0, the limit, as n → ∞, of

(�2(n) − �1(n) + 1) sup
�∈�n

P

(∣∣∣∣∣ 1
n − � + 1

n−�+1∑
i=1

Ũ�,i(x)

∣∣∣∣∣ > ε

)

(9)
is zero, where Ũ�,i(x) := 1{S�,i � x} − P(S�,1 � x).

Under absolute regularity or strong mixing of X, the con-
centration inequality due to Bosq (1996, theor. 1.3(1), p. 25)

provided an upper bound for the quantity in (9) that tends to
zero as n → ∞, as long as α(k) = O(k−�) for some � > 1
(see Politis, Romano, and Wolf 2001, theor. 4.1). An analogous
bound may be obtained, via an exponential tail inequality for
partial sums, if the random variables {Ũ�,i(x), 1 � i � n−�+1}
form a near-epoch dependent sequence on V with suitable poly-
nomial rates of decay for its approximating constants and for the
coefficients of absolute regularity {β̃(k)} of V. To see how such
an inequality may be established, note that, if {Ũ�,i(x)} is near-
epoch dependent on V, when viewed as a process indexed by i ∈
N at any fixed � and x, then {Ũ�,i(x),Gi−∞} is a strictly stationary
mixingale (in L

1-norm), Gi−∞ being the σ -field generated by
{Vt , t � i}; in other words, there exists a sequence of nonnega-
tive constants {ϕ(m), m ∈ N0} converging to zero such that, for
each m ∈ N0, E(|E(Ũ�,1(x)|G1−m−∞ )|) � ϕ(m) and E(|Ũ�,1(x) −
E(Ũ�,1(x)|G1+m−∞ )|) � ϕ(m + 1). Moreover, since Ũ�,1(x) is
integrable to any order, the rate of convergence of {ϕ(m)} is the
same as the slower of the rates at which {β̃(k)} and the approxi-
mating constants of {Ũ�,i(x)} approach zero (see Davidson 1994,
theor. 17.5(i), p. 264). Therefore, provided

∑∞
m=0 ϕ(m) < ∞, it

follows by Theorem 16.6 in Davidson (1994, p. 250) that Ũ�,i(x)

can be represented in the form Ũ�,i(x) = Wi + Zi − Zi+1,
where {Wi,Gi−∞} is a strictly stationary martingale difference
sequence and {Zi} is a strictly stationary sequence of integrable
random variables; furthermore, {Wi} and {Zi} are uniformly
bounded by virtue of the uniform boundedness of {Ũ�,i(x)} (see
Vaněček 2006, p. 704). Hence, arguing as in the proof of Vaněček
(2006, lem. 8) and using the Azuma–Hoeffding inequality for
martingale differences (e.g., Davidson 1994, theor. 15.20, p.
245), it can be deduced that there exist constants C1 > 0 and
C2 > 0 such that, for any ε > 0,

P

(∣∣∣∣∣ 1
n − � + 1

n−�+1∑
i=1

Ũ�,i(x)

∣∣∣∣∣ > ε

)
� C1 exp(−C2[n − � + 1]ε2).

Consequently, (9) is bounded above by C′
1�2(n) exp(−C′

2[n −
�2(n)+ 1]ε2), for some appropriate constants C′

1 > 0 and C′
2 >

0, which approaches zero as n → ∞ and n−1�2(n) → 0.

4. Monte Carlo Simulations

In this section, we report and discuss the results of a simulation
study of the finite-sample properties of confidence intervals for
the skewness parameter θ .

4.1. Experimental Design

The experimental design is similar to that in Psaradakis and
Vávra (2019), and includes both linear and nonlinear data-
generating mechanisms. Specifically, we consider artificial data
generated according to the following models (t ∈ Z):

M1: Xt = 0.8Xt−1 + εt ,
M2: Xt = 0.6Xt−1 − 0.5Xt−2 + εt ,
M3: Xt = 0.6Xt−1 + 0.3εt−1 + εt ,
M4: Xt = 0.9Xt−11{|Xt−1| � 1} − 0.3Xt−11{|Xt−1| > 1} + εt ,
M5: Xt = ζtεt , ζ 2

t = 0.05 + (0.1ε2
t−1 + 0.85)ζ 2

t−1,
M6: Xt = 0.7Xt−2εt−1 + εt .
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In each case, {εt} are iid random variables whose distribution is
either N (0, 1) (labeled N in the various tables) or generalized
lambda, with quantile function u �→ λ1 + λ−1

2 {uλ3 − (1 −
u)λ4}, u ∈ (0, 1), recentered at zero and rescaled to have unit
variance. The values of (λ1, λ2, λ3, λ4) used in the experiments,
taken from Randles et al. (1980), can be found in Table 1, along
with the associated classical measures of skewness and kurtosis
based on standardized third and fourth cumulants; distribu-
tions S1–S3 are symmetric, whereas A1–A4 are asymmetric.
Models M1–M3 define ARMA processes, the one-dimensional
marginal distribution of which is symmetric if εt is symmetri-
cally distributed. Models M4, M5 and M6 define a self-exciting
threshold autoregressive process, a generalized autoregressive
conditionally heteroscedastic process, and a bilinear process,
respectively; in all three cases, the third cumulant of Xt is
zero if εt is symmetric about zero (Pemberton and Tong 1981;
Martins 1999). Note that models M1–M6 admit geometrically
ergodic Markovian representations and, hence, their strictly
stationary solutions are absolutely regular (and strongly mixing)
with geometrically decaying mixing coefficients (see Mokkadem
1988, theor. 1; Chan et al. 1985, theor. 2.3; Francq and Zakoïan
2006, theor. 3; Doukhan 1994, corol. 1, p. 98). All six processes
{Xt} can also be shown to be near-epoch dependent on the
noise sequence {εt} with approximating constants that decline
at geometric rates (see Davidson 2002).

For each design point, 1000 independent realizations of
{Xt} of length 100 + n, with n ∈ {100, 200}, are generated.
The first 100 data points of each realization are discarded to
minimize initialization effects and the remaining n data points
are used to compute the confidence intervals for θ defined in
Equations (6)–(8). The subsample size is selected by means of

Table 1. Noise distributions.

λ1 λ2 λ3 λ4 Skewness Kurtosis

N – – – – 0.0 3.0
S1 0.000000 −1.000000 −0.080000 −0.080000 0.0 6.0
S2 0.000000 −0.397912 −0.160000 −0.160000 0.0 11.6
S3 0.000000 −1.000000 −0.240000 −0.240000 0.0 126
A1 0.000000 −1.000000 −0.007500 −0.030000 1.5 7.5
A2 0.000000 −1.000000 −0.100900 −0.180200 2.0 21.2
A3 0.000000 −1.000000 −0.001000 −0.130000 3.2 23.8
A4 0.000000 −1.000000 −0.000100 −0.170000 3.9 40.7

the bootstrap-based calibration algorithm and the minimum-
volatility algorithm described in Section 3.2, with �1(n) =⌊
(1/2)

√
n
⌋

and �2(n) = ⌊
(5/2)

√
n
⌋

, where �x� denotes the
greatest integer that does not exceed x ∈ R; these values are
in line with the recommendation of Romano and Wolf (2001, p.
1297).

4.2. Simulation Results

Simulation results over all 24 design points under which the
distribution of Xt is symmetric are summarized graphically in
Figure 1. This shows boxplots of the estimated coverage prob-
abilities (in percentage) of various confidence intervals for θ ,
of nominal level 1 − δ = 0.95, computed as the percentage
of Monte Carlo replications in which each confidence interval
correctly includes θ = 0. The top and bottom of each colored
box represent the 25th and 75th percentiles, respectively, of the
estimated coverage probabilities, the black diamond inside the
box indicates the mean value, and the whiskers indicate the 10th
and 90th percentiles. The confidence intervals considered are:
(i) the equal-tailed and symmetric subsampling intervals C(1)

n,�(δ)

and C(2)
n,�(δ), and the Gaussian approximation interval C(3)

n,�(δ),
with subsample size determined by means of the calibration
method (labelled C(1)

CA, C(2)
CA, and C(3)

CA, respectively, in the figures
and tables); (ii) the corresponding intervals with subsample
size determined by means of the minimum-volatility method
(labelled C(1)

MV , C(2)
MV , and C(3)

MV , respectively). Detailed results for
individual design points can be found in Table 4 in Appendix B.

It is clear that symmetric subsampling confidence intervals
outperform all other competitors when the subsample size is
selected by means of the calibration method, having coverage
probabilities which are close to the nominal 0.95 level for the
vast majority of design points. Selecting the subsample size
for such intervals by minimizing the volatility of their end-
points generally leads to somewhat lower coverage, but with-
out the magnitude of the coverage errors making the intervals
unattractive for applications. The confidence interval based on
the Gaussian large-sample approximation, used in conjunction
with the subsampling variance estimator σ̂ 2

n,� and the calibra-
tion method, is also a good competitor and often outperforms
equal-tailed subsampling confidence intervals. The latter tend

Figure 1. Monte Carlo results under symmetry; estimated probabilities (in percentage) that 95% confidence intervals contain θ = 0.
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Figure 2. Monte Carlo results under asymmetry; estimated probabilities (in percentage) that 95% confidence intervals do not contain θ = 0.

to undercover somewhat, the problem being more pronounced
when the subsample size is determined via the minimum-
volatility method.

Simulation results over all 24 design points under which the
distribution of Xt is asymmetric are summarized graphically in
Figure 2. This show boxplots of the estimated probabilities (in
percentage) of θ = 0 being excluded from confidence intervals
for θ (of nominal level 0.95), computed as the percentage of
Monte Carlo replications in which θ = 0 falls outside each of
the confidence intervals. Detailed results for individual design
points can be found in Table 5 in Appendix B. Notwithstanding
the fact that θ = 0 is not necessarily precluded by asymme-
try, the simulation results show that the ability of the various
confidence intervals to exclude the value of θ which is typically
consistent with symmetry is generally high, with no particular
confidence interval dominating. As expected, improved perfor-
mance is observed with increasing skewness and leptokurtosis
in the noise distribution, as well as with an increasing sample
size.

5. Real-Data Examples

In this section, we illustrate the practical use of the proposed
methods by analyzing two real-world datasets.

5.1. Output Growth

In our first illustrative example, we investigate the distributional
symmetry of real gross domestic product (GDP), an economic
variable analyzed in many studies of the asymmetric behavior of
business cycles (see, inter alia, DeLong and Summers 1986; Ver-
brugge 1997; Razzak 2001; Narayan and Popp 2009; Psaradakis
2016). Our dataset consists of time series on real GDP from
15 OECD countries, representing approximately 35% of the
world real GDP (as measured in constant 2011 U.S. Dollars).
All time series are quarterly, seasonally adjusted, and span the
period 1961:1 to 2018:4 (232 observations). The data can be
downloaded from the OECD website (https://stats.oecd.org/).

DeLong and Summers (1986) and Sichel (1993) character-
ized asymmetry of the business cycle by asymmetry of the
one-dimensional marginal distribution of the growth rate of a

measure of economic output. This type of asymmetry is typically
referred to as “growth-rate” or “steepness” asymmetry (con-
tractions are steeper than expansions, or vice versa), and is an
example of what Ramsey and Rothman (1996) classified as “lon-
gitudinal” asymmetry (asymmetry in the direction of movement
of the business cycle). Our analysis is based, therefore, on the
quarterly growth rates of real GDP.

For each time series, we compute the subsampling p-value
for an equal-tailed test of the null hypothesis θ = 0 vs. the
alternative θ �= 0, defined as P(1)

n,� := min{2P+
n,�, 2(1 − P+

n,�)},
where

P+
n,� := 1

n − � + 1

n−�+1∑
i=1

1
{√

�(T�,i − Tn) �
√

nTn
}

,

as well as the subsampling p-value for the corresponding sym-
metric test, defined as

P(2)
n,� := 1

n − � + 1

n−�+1∑
i=1

1
{√

�
∣∣T�,i − Tn

∣∣ � √
n |Tn|

}
.

As in the construction of confidence intervals for θ , the subsam-
pling p-values are based on subsample statistics centered at Tn,
as recommended by Berg, McMurry, and Politis (2010).

In each case, the subsample size � is determined by cali-
brating the coverage probability of the corresponding subsam-
pling confidence interval for θ (of nominal level 0.95) or by
minimizing the volatility of the endpoints of such an interval
(see Section 3.2); as in the Monte Carlo experiments, �1(n) =⌊
(1/2)

√
n
⌋ = 7 and �2(n) = ⌊

(5/2)
√

n
⌋ = 37. The resulting

p-values are labeled P(1)
CA, P(2)

CA, P(1)
MV and P(2)

MV in Table 2.
On the basis of symmetric subsampling p-values P(2)

CA, with
the subsample size selected via the calibration method (the best
performing combination in our simulations), evidence in favor
of asymmetry in real GDP growth rates, at the conventional 0.05
significance level, is found only for Australia and Korea; the test
rejects for Japan too if p-values P(2)

CA obtained via the minimum-
volatility method are used instead. The subsampling p-values
P(1)

CA for equal-tailed tests additionally reject for Italy, and also for
France if P(1)

MV are used. We conclude, therefore, that steepness

https://stats.oecd.org/
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Table 2. Empirical results (output growth).

P(1)
CA P(2)

CA P(1)
MV P(2)

MV

Australia 0.000 0.019 0.000 0.005
Belgium 0.378 0.443 0.167 0.500
Canada 0.462 0.527 0.151 0.599
Finland 0.391 0.315 0.304 0.253
France 0.124 0.230 0.010 0.286
Italy 0.000 0.117 0.028 0.059
Japan 0.027 0.095 0.000 0.014
Korea 0.000 0.014 0.000 0.000
Netherlands 0.500 0.648 0.352 0.783
Norway 0.201 0.137 0.071 0.096
Portugal 0.391 0.489 0.859 0.485
Spain 0.391 0.600 0.201 0.576
Sweeden 0.161 0.302 0.215 0.306
United Kingdom 0.951 0.805 0.995 0.922
United States 0.871 0.762 0.709 0.767

Table 3. Empirical results (asset returns).

P(1)
CA P(2)

CA P(1)
MV P(2)

MV

Amsterdam 0.000 0.000 0.000 0.000
Frankfurt 0.000 0.000 0.000 0.002
Hong Kong 0.000 0.000 0.000 0.000
London 0.463 0.332 0.406 0.313
New York 0.076 0.067 0.021 0.075
Paris 0.022 0.026 0.008 0.006
Singapore 0.251 0.267 0.198 0.240
Tokyo 0.000 0.000 0.000 0.000

does not appear to be a universal characteristic of international
business cycles.

We note that Verbrugge (1997) and Razzak (2001) also used a
triples U-statistic to test for symmetry of the business cycle. The
former relied on Monte Carlo critical values for the implemen-
tation of the test, assuming that the data-generating mechanism
is an ARMA model with symmetric iid noise, while the latter
treated the data as independent. By contrast, the subsampling-
based tests do not rely on any parametric model of the depen-
dence structure of the data.

5.2. Asset Returns

In our second example, we examine the distributional symmetry
of returns of eight major equity indices. The dataset is taken
from Franses and van Dijk (2000) (and is available at https://sites.
google.com/view/dickvandijk/nltsmef ). It comprises of weekly
observations (recorded on Wednesdays) on price indices of
the following stock exchanges: Amsterdam (EOE), Frankfurt
(DAX), Hong Kong (Hang Seng), London (FTSE 100), New
York (S&P 500), Paris (CAC 40), Singapore (FTSE ST All Share),
and Tokyo (Nikkei 225). The data cover the period from January
6, 1986 to December 31, 1997 (626 observations), except for
the CAC index, for which the data are from July 9, 1987 to
December 31, 1997 (547 observations). The analysis is based on
the weekly logarithmic returns of each index.

For each time series of returns, we compute the subsampling
p-values P(1)

CA, P(2)
CA, P(1)

MV and P(2)
MV defined in Section 5.1, with

�1(n) = ⌊
(1/2)

√
n
⌋ = 12 and �2(n) = ⌊

(5/2)
√

n
⌋ = 62

(�1(n) = 11 and �2(n) = 58 for CAC). According to the
results reported in Table 3, when using symmetric subsampling

p-values P(2)
CA, with the subsample size selected via the calibra-

tion method, the null hypothesis θ = 0 is rejected (at the
conventional 0.05 significance level) in favor of the alternative
θ �= 0 for all stock exchanges except London, New York, and
Singapore. Symmetry is rejected in the case of New York too if
the equal-tailed subsampling p-value P(1)

MV , with the subsample
size selected via the minimum-volatility method, is used. We
conclude, therefore, that there is significant evidence of asym-
metry in the returns of international equity indices. This is
consistent with the often expressed view that asymmetry of the
marginal distribution of asset returns is a stylized empirical fact
(e.g., Cont 2001), but is in contrast to the conclusion reached
by Peiró (1999), who, using different techniques, reports much
weaker evidence against symmetry for (a different set of) daily
index returns.

6. Conclusion

This article has considered using a U-statistic based on data
triples to assess symmetry of the one-dimensional marginal
distribution of strictly stationary random processes satisfying
suitable weak dependence conditions. The results given here
allow for absolutely regular processes, strongly mixing process,
and near-epoch dependent processes with an absolutely regular
base. We have discussed how subsampling may be used to
draw asymptotically valid inferences about the target skewness
parameter. A simulation study has demonstrated that symmetric
subsampling confidence intervals based on a data-dependent
subsample size determined via calibration have good finite-
sample properties and generally outperform equal-tailed sub-
sampling intervals and confidence intervals based on a Gaussian
large-sample approximation. Empirical illustrations using time
series of output growth rates and stock index returns have also
been discussed.

The related problem of assessing conditional symmetry of a
random process around a parametric or nonparametric func-
tion using a triples-based U-statistic is certainly worthy of con-
sideration. Such an extension is nontrivial, not least because the
kernel of the relevant triples statistic will typically depend on
unknown parameters that have to be estimated. We leave this
topic for future research.

Appendix A: Proofs

Proof of Theorem 1: By Hoeffding’s decomposition of a U-statistic
(e.g., Serfling 1980, pp. 177–178),

Sn = 3√
n

n∑
t=1

ψ1(Xt) + 6√
n(n − 1)

∑∑
1�t1<t2�n

ψ2(Xt1 , Xt2)

+ 6√
n(n − 1)(n − 2)

∑∑∑
1�t1<t2<t3�n

ψ3(Xt1 , Xt2 , Xt3)

=: Ln,1 + Ln,2 + Ln,3, (A.1)

where

ψ2(x1, x2) :=
∫ ∞
−∞

ψ(x1, x2, x3)dF(x3)

− ψ1(x1) − ψ1(x2) − θ , x1, x2 ∈ R,

https://sites.google.com/view/dickvandijk/nltsmef
https://sites.google.com/view/dickvandijk/nltsmef
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ψ3(x1, x2, x3) := ψ(x1, x2, x3) −
3∑

i=1
ψ1(xi)

−
2∑

i=1

3∑
j=i+1

ψ2(xi, xj) − θ , x1, x2, x3 ∈ R.

Under (i), and since ψ1 is measurable, {ψ1(Xt)} is a strictly station-
ary and uniformly bounded sequence of zero-mean random variables
whose coefficients of absolute regularity are bounded by those of X.
Consequently, τ < ∞ and Ln,1 → N (0, 9τ) in distribution as n → ∞,
on account of Theorem 18.5.4 in Ibragimov and Linnik (1971, p. 347).
Furthermore, noting that sup−∞<t1<t2<t3<∞

∣∣ψ(Xt1 , Xt2 , Xt3)
∣∣ < ∞

almost surely, we have

E(L2
n,2) =

36
n(n − 1)2

n−1∑
t1=1

n∑
t2=t1+1

n−1∑
t3=1

n∑
t4=t3+1

E[ψ2(Xt1 , Xt2)ψ2(Xt3 , Xt4)]

� 36
n3

n−1∑
t1=1

n∑
t2=t1+1

n−1∑
t3=1

n∑
t4=t3+1

∣∣E[ψ2(Xt1 , Xt2)

ψ2(Xt3 , Xt4)]
∣∣ → 0 as n → ∞, (A.2)

by the bound given in Lemma 3 of Arcones (1995) and an argument
similar to that used in the proof of his Theorem 1. An analogous
argument leads to

E(L2
n,3) → 0 as n → ∞. (A.3)

Therefore, by the Bienaymé–Chebyshev inequality, both Ln,2 and Ln,3
converge in probability to zero as n → ∞, and the statement of the
theorem follows by Slutsky’s lemma.

The stated results under (ii) and (iii) follow as special cases of
Theorem 2.3 of Fischer, Fried, and Wendler (2016) and Theorem 2.1
of Fischer (2017), respectively. �

Proof of Theorem 2: Recalling the decomposition of Sn in (A.1) and
noting that τ < ∞ under the conditions of the theorem, we have

E(L2
n,1) = 9

n−1∑
h=1−n

(
1 − |h|

n

)
E[ψ1(X0)ψ1(Xh)] → σ 2

as n → ∞,

by Kronecker’s lemma. Moreover, in view of Arcones (1995, lem. 3),
Fischer, Fried, and Wendler (2016, lem. 4.3), and the fact that∑n

k=1 kα(k)γ /(2γ+1) � ∑n
k=1 k1−ηγ/(2γ+1) = O(n�) for some � ∈

(0, 1), the convergence results in (A.2) and (A.3) hold under conditions
(i) and (ii) of Theorem 1. Therefore, as n → ∞, E[(Ln,2 + Ln,3)2] → 0
and E[Ln,1(Ln,2 + Ln,3)] → 0, by the Cr-inequality and the Cauchy–
Bunyakovskii–Schwarz inequality, respectively, and thus E(S2

n) → σ 2

as n → ∞. Upon noting that the latter result, together with Theorem 1,
ensures that the sequence {S2

n, n � 3} is uniformly integrable (e.g.,
Serfling 1980, lem. B, p. 15), the stated convergence of Hn,� and σ̂ 2

n,�
follows from Tewes, Politis, and Nordman (2019, corol. 2). �

Proof of Theorem 3: Since, by Theorem 1 and the
continuity of the standard normal distribution function �,
supx∈R |P(Sn � x) − �(x/σ)| → 0 as n → ∞, to establish
consistency of Hn,� for the distribution function of Sn it is enough to
show that supx∈R

∣∣Hn,�(x) − �(x/σ)
∣∣ → 0 in probability as n → ∞.

Hence, by the same argument as in the proof of Politis, Romano, and
Wolf (1999, theor. 3.2.1, pp. 70–72), it suffices to verify that, for each
fixed x ∈ R, Ūn,�(x) := (n − � + 1)−1 ∑n−�+1

i=1 U�,i(x) converges in
probability to �(x/σ) as n → ∞. Because E[Ūn,�(x)] = P(S�,1 � x)

converges to �(x/σ) as n → ∞, on account of Theorem 1 and the
assumption on �, it remains to show that var[Ūn,�(x)] → 0 as n → ∞
for each x ∈ R. To this end, observe that, by the strict stationarity of
{U�,i(x)}, viewed as a process indexed by i,

var[Ūn,�(x)] = 1
(n − � + 1)2

n−�∑
h=�−n

(n − � + 1 − |h|)

cov[U�,1(x), U�,1+|h|(x)]

� 1
(n − � + 1)2

n−�∑
h=�−n

(n − � + 1 − |h|)
∣∣cov[U�,1(x), U�,1+|h|(x)]∣∣

� 2
n − � + 1

n−�∑
h=0

∣∣cov[U�,1(x), U�,1+h(x)]∣∣ ,

where, by the assumption in Equation (5), the majorant side converges
to zero as n → ∞. Thus, Hn,�(x) − �(x/σ) → 0 in probability as
n → ∞, for each x ∈ R, from which convergence in the uniform
metric follows by a standard subsequence argument and the continuity
of �.

To prove consistency of σ̂ 2
n,� for σ 2, note that

n∑
k=0

kβ̃(k) +
n∑

k=0
k

(
2

∞∑
m=k

ξ(m)

)1/2

� C
n∑

k=1
k
(

k−ν + n−(ν+1)/2
)

= O(n�) + O(n2−(ν+1)/2) = O(n�),

for some C > 0 and � � 0. Hence, using Fischer (2017, lem. A.2),
it is easy to verify that the convergence results in Equations (A.2)
and (A.3) hold under the conditions of the theorem. By the same
argument as in the proof of Theorem 2, it then follows that the sequence
{S2

n, n � 3} is uniformly integrable. This, together with the fact that
supx∈R

∣∣Hn,�(x) − �(x/σ)
∣∣ → 0 in probability as n → ∞, ensures

the stated convergence of σ̂ 2
n,� via Theorem 3(iii) of Tewes, Politis, and

Nordman (2019). �

Proof of Corollary 1: By virtue of Theorem 1, Theorem 2(a), the
continuity of �, and the continuous mapping theorem, we have that,
as n → ∞, supx∈R

∣∣Hn,�(x) − �(x/σ)
∣∣ → 0 in probability and

supx�0
∣∣H̄n,�(x) − (2�(x/σ) − 1)

∣∣ → 0 in probability. Hence, as
n → ∞, H−1

n,� (δ) → σ�−1(δ) in probability and H̄−1
n,� (1 − δ) →

σ�−1(1 − δ/2) in probability, for any δ ∈ (0, 1), from which the
stated asymptotic coverage of C(1)

n,�(δ) and C(2)
n,�(δ) follows readily using

Slutsky’s lemma. �
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