

Journal of Business & Economic Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ubes20

Using Triples to Assess Symmetry Under Weak Dependence

Zacharias Psaradakis & Marián Vávra

To cite this article: Zacharias Psaradakis & Marián Vávra (2021): Using Triples to Assess Symmetry Under Weak Dependence, Journal of Business & Economic Statistics, DOI: 10.1080/07350015.2021.1939037

To link to this article: https://doi.org/10.1080/07350015.2021.1939037

Published online: 26 Jul 2021.

Submit your article to this journal 🕝

Article views: 58

View related articles

🌔 🛛 View Crossmark data 🗹

() Check for updates

Using Triples to Assess Symmetry Under Weak Dependence

Zacharias Psaradakis^a and Marián Vávra^b

^aDepartment of Economics, Mathematics and Statistics Birkbeck, University of London, London, UK; ^bInstitute of Economics, Comenius University in Bratislava and Research Department, National Bank of Slovakia, Bratislava, Slovakia

ABSTRACT

The problem of assessing symmetry about an unspecified center of the one-dimensional marginal distribution of a strictly stationary random process is considered. A well-known *U*-statistic based on data triples is used to detect deviations from symmetry, allowing the underlying process to satisfy suitable mixing or near-epoch dependence conditions. We suggest using subsampling for inference on the target parameter, establish the asymptotic validity of the method in our setting, and discuss data-driven rules for selecting the size of subsamples. The small-sample properties of the proposed inferential procedures are examined by means of Monte Carlo simulations. Applications to time series of output growth and stock returns are also presented.

ARTICLE HISTORY

Received February 2021 Accepted May 2021

KEYWORDS

Mixing; Near-epoch dependence; Subsampling; Symmetry; U-statistic

1. Introduction

Assessing whether a probability distribution is symmetric about a specified or unspecified center is a problem that has attracted considerable attention. This is not surprising in view of the fact that symmetry plays a fundamental role in many statistical inference and model identification procedures. A variety of nonparametric and robust inferential procedures rely heavily on the assumption of symmetry and tend to perform rather poorly when the assumption fails (see, e.g., Maronna et al. 2019). Symmetry is also important in terms of the definition and estimation of location since the center of symmetry of a distribution is its only natural location parameter, and is a location parameter that is robustly or even adaptively estimable (e.g., Beran 1978). Moreover, symmetry is known to reduce the error of large-sample approximations to the sampling distributions of many statistics and permits the construction of resamplingbased inferential procedures which are considerably more accurate than those that rely on first-order asymptotic theory (e.g., Jing 1995; Zhilova 2020). It is not uncommon, therefore, for data transformations that yield symmetry, or approximate symmetry, to be used prior to the application of many classical statistical procedures in cases where asymmetry is found. It is also worth noting that some well-known problems, such as, for instance, evaluating the lack of a treatment effect via paired comparisons (e.g., Lehmann and Romano 2005, sec. 6.8) or detecting time-reversibility of a random process (e.g., Chen, Chou, and Kuan 2000; Psaradakis 2008), may be reformulated in terms of assessing distributional symmetry of appropriately transformed data.

In the context of model building, detecting possible deviations from symmetry of the one-dimensional marginal distribution of the data is a useful model checking tool, for asymmetry implies that certain families of parametric models are invalid candidate models. For example, the use of autoregressive moving average (ARMA) models or nonlinear Markovian models with skew-symmetric autoregressive functions (see Pemberton and Tong 1981), whose independent, identically distributed (iid) driving noise has a symmetric distribution, is inappropriate when the marginal distribution of the underlying process is asymmetric. In such time-series models, symmetry, or lack of it, also has implications for inference. In a causal ARMA model with iid noise, for example, robust estimation is possible when the noise distribution and, in consequence, the one-dimensional marginal distribution of the observed data, is symmetric (see, e.g., Muler, Peña, and Yohai 2009). In a geometrically ergodic nonlinear autoregressive model with a skew-symmetric conditional mean function and iid noise, to give another example, symmetry of the noise, and the implied symmetry of the onedimensional stationary distribution of the data, permit the construction of adaptive estimators of the parameters (see Koul and Schick 1997).

Assessing deviations from symmetry can also be useful as a way of evaluating the empirical validity of different hypotheses and theoretical models in so far as they rely on or imply distributional symmetry. In finance, for instance, symmetry is an implicit or explicit assumption in some commonly used models, including the Sharpe–Lintner asset-pricing model and the Black–Scholes option-pricing model. However, many studies have reported empirical findings of asymmetry in the distributions of financial data, including the distributions of individual asset returns and portfolio returns. Such findings have significant implications for portfolio selection, risk management and asset pricing (see Conine and Tamarkin 1981; Chunhachinda et al. 1997; Mitton and Vorkink 2007, inter alia). Moreover, they are incompatible with the assumption of elliptically distributed multivariate asset returns that underlies much of

CONTACT Zacharias Psaradakis 2.psaradakis@bbk.ac.uk Department of Economics, Mathematics and Statistics, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK.

classical mean-variance analysis of portfolio choice and equilibrium asset pricing (see, e.g., Ingersoll 1987). As a result, the adequacy of standard financial models that rely on symmetry assumptions has been questioned and attempts have been made to extend and modify such models to incorporate asymmetries (e.g., Jurczenko, Maillet, and Negrea 2004; Chabi-Yo 2012). Another leading example from economics in which symmetry is a central issue relates to the long-standing question of whether real economic variables behave asymmetrically over the business cycle. Following DeLong and Summers (1986) and Sichel (1993), a considerable body of work has evolved in which different types of cyclical asymmetry are identified via the distributional asymmetry of relevant economic variables. The empirical evidence in favor of cyclical asymmetry that has emerged necessitates the development of equilibrium models of the business cycle in which asymmetries are generated endogenously (see, e.g., Nieuwerburgha and Veldkamp 2006; McKay and Reis 2008), and such asymmetries should also be accounted for in the calibration exercises that are used extensively in dynamic macroeconomics. Findings of businesscycle asymmetries must also be taken into consideration when developing empirical models since they impose restrictions on the types of parametric models that may be used as valid statistical representations of economic time series, ruling out, for example, ARMA models with symmetrically distributed noise. Needless to say, in applications such as these involving timeseries data, it is imperative that statistical inference on symmetry be based on procedures which are robust to deviations from the independence assumption that is maintained in the vast majority of the literature on testing symmetry.

With this in mind, the present article focuses on the problem of assessing symmetry of the one-dimensional marginal distribution of dependent data. Specifically, we consider using a *U*statistic involving triples of observations to detect deviations from symmetry, without specifying or estimating the center of symmetry. Such statistics, which may be thought of as estimators of an index of skewness of the underlying distribution, have been previously used by Davis and Quade (1978) and Randles et al. (1980) to develop tests for symmetry under the assumption that the observed data are realizations of iid random variables. Our objective in this article is to extend triples-based procedures to the case of strictly stationary sequences of weakly dependent random variables, thus expanding considerably the range of datasets with which such procedures may be validly used.

Alternative approaches to detecting asymmetry of the marginal distribution of dependent data (in the case of an unspecified location) include, among others, approaches based on moment conditions (Bai and Ng 2005; Psaradakis 2016), distribution distance measures (Psaradakis 2003; Maasoumi and Racine 2009), the characteristic function (Leucht 2012), and order statistics (Psaradakis and Vávra 2015). In a recent study, Psaradakis and Vávra (2019) investigated the properties of tests for symmetry based on some of these approaches, as well as of tests which have been designed for iid data. As a way of robustifying tests to deviations from the assumption of independence and/or controlling their levels for a fixed sample size, they explored the possibility of using resampling procedures appropriate for dependent data to construct critical regions for the tests. In a comparison of 20 well-known tests for symmetry, the

majority of them developed under iid conditions, a bootstrapassisted version of a test based on a *U*-statistic involving data triples was found to be a serious competitor to all other tests in the presence of serial correlation in the data, providing the best overall performance in terms of finite-sample level accuracy and power. The results of Eubank, Iariccia, and Rosenstein (1992), under iid conditions, also suggest that the triples test is the test of choice against unimodal asymmetric alternatives. The focus in the present article on triples-based inferential procedures is motivated in part by these findings.

Under suitable regularity conditions, the triples U-statistic is shown to have a Gaussian asymptotic distribution for a large class of strictly stationary random processes that includes absolutely regular processes, strongly mixing processes, and nearepoch dependent functionals of absolutely regular processes. However, unless the infinite-dimensional distributions of such processes are fully specified, the asymptotic variance of the triples statistic is unknown. Rather than relying on a Gaussian asymptotic approximation for inference purposes, we suggest to use the model-free subsampling methodology of Politis and Romano (1994a) to approximate the distribution of the triples U-statistic and to construct confidence intervals and/or hypothesis tests for the target parameter. The subsampling method may also be used to estimate the asymptotic variance of the triples Ustatistic. The basic idea of subsampling is to treat overlapping blocks of adjacent observations as replicates of the original data structure, compute the statistic of interest (in our case the triples U-statistic) over such 'subsamples', and use the subsample replicates of the statistic to approximate its distribution and/or estimate its variance nonparametrically. As is clear from the thorough review of subsampling by Politis, Romano, and Wolf (1999), the method has wide applicability, is easy to implement in practice, and its asymptotic validity often requires little more than the statistic of interest having a nondegenerate asymptotic distribution (when suitably normalized).

The remainder of the article is organized as follows. Section 2 introduces the *U*-statistic based on triples and obtains its asymptotic distribution for large classes of weakly dependent random processes. Section 3 details how subsampling may be used to construct confidence intervals and/or hypotheses tests for the parameter of interest, establishes the asymptotic validity of the method, and discusses data-driven rules for selecting the subsample size. Section 4 examines the finite-sample properties of the proposed inferential procedures by means of Monte Carlo experiments. Section 5 discusses applications to economic and financial data. Section 6 summarizes and concludes. Proofs are collected in Appendix A and detailed simulation results are reported in Appendix B.

2. Triples Statistic and Its Asymptotic Distribution

Let $\mathbf{X}_n := \{X_1, X_2, \dots, X_n\}$ be an observable segment of a realvalued, strictly stationary random process $\mathbf{X} := \{X_t, t \in \mathbb{Z}\}$ with continuous one-dimensional marginal distribution function $F(x) := \mathsf{P}(X_0 \leq x), x \in \mathbb{R}$. The objective is to assess whether *F* is symmetric about some unspecified center $\mu \in \mathbb{R}$, that is,

$$F(\mu - x) + F(\mu + x) = 1, \quad x \in [0, \infty),$$
 (1)

or, equivalently, that $X_0 - \mu$ and $\mu - X_0$ are identically distributed. (As usual, \mathbb{R} , \mathbb{Z} , \mathbb{N}_0 , and \mathbb{N} are used throughout to denote the sets of real numbers, integers, nonnegative integers, and positive integers, respectively).

Similarly to Randles et al. (1980), we consider identifying departures from (1) by means of a *U*-statistic

$$T_n := \frac{6}{n(n-1)(n-2)} \sum_{1 \le t_1 < t_2 < t_3 \le n} \psi(X_{t_1}, X_{t_2}, X_{t_3}), \quad n \ge 3.$$

whose kernel $\psi : \mathbb{R}^3 \to \mathbb{R}$ is given by

$$\psi(x_1, x_2, x_3) := \frac{1}{3} \left\{ \operatorname{sgn}(x_1 + x_2 - 2x_3) + \operatorname{sgn}(x_1 + x_3 - 2x_2) + \operatorname{sgn}(x_2 + x_3 - 2x_1) \right\},\$$

where $sgn(x) := x^{-1} |x|$ for $x \neq 0$ and sgn(0) := 0. An equivalent formulation was considered by Davis and Quade (1978). If **X** is an iid sequence, then $E(T_n) = E[\psi(X_1, X_2, X_3)] = 0$ whenever *F* satisfies (1).

In the sequel, we relax the independence assumption maintained in Davis and Quade (1978) and Randles et al. (1980), and allow \mathbf{X} to be a weakly dependent process satisfying suitable mixing conditions. As measures of the degree of dependence, we use the Rozanov–Volkonskii coefficients of absolute regularity

$$\beta(k) := \mathsf{E}\left(\sup_{A \in \mathcal{F}_{k}^{\infty}} \left|\mathsf{P}(A | \mathcal{F}_{-\infty}^{0}) - \mathsf{P}(A)\right|\right), \quad k \in \mathbb{N},$$

and Rosenblatt's strong-mixing coefficients

$$\alpha(k) := \sup_{A' \in \mathcal{F}^0_{-\infty}, A \in \mathcal{F}^\infty_k} \left| \mathsf{P}(A' \cap A) - \mathsf{P}(A') \mathsf{P}(A) \right|, \quad k \in \mathbb{N},$$

where $\mathcal{F}_{-\infty}^{0}$ and \mathcal{F}_{k}^{∞} denote the σ -fields generated by $\{X_{t}, t \leq 0\}$ and $\{X_{t}, t \geq k\}$, respectively. The (strictly stationary) process **X** is said to be absolutely regular if $\beta(k) \rightarrow 0$ as $k \rightarrow \infty$, and strongly mixing if $\alpha(k) \rightarrow 0$ as $k \rightarrow \infty$. Under suitable conditions, the strictly stationary, causal solutions of many commonly used time-series models are known to be absolutely regular or strongly mixing (often with geometrically decaying mixing coefficients); examples include ARMA models, nonlinear models with an ergodic Markovian structure, linear state-space models, autoregressive conditionally heteroscedastic models, and stochastic volatility models (see, e.g., Doukhan 1994, sec. 2.4). Because $2\alpha(k) \leq \beta(k) \leq 1$ for all $k \in \mathbb{N}$, if **X** is absolutely regular, then it is also strongly mixing (and, therefore, ergodic). The case where **X** is *q*-dependent, for some $q \in \mathbb{N}_{0}$, is a special case in which $\beta(k) = \alpha(k) = 0$ for all k > q.

In addition to absolutely regular and strongly mixing processes, we also consider the case where **X** is a near-epoch dependent (two-sided) functional of a mixing sequence. More specifically, for a real-valued, strictly stationary random process $\mathbf{V} := \{V_t, t \in \mathbb{Z}\}$ and a measurable function $f : \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}$, let **X** be such that $X_t = f(\{V_{t+j}, j \in \mathbb{Z}\})$ for each $t \in \mathbb{Z}$. If X_0 is integrable and there exists a sequence of nonnegative constants $\{\xi(m), m \in \mathbb{N}_0\}$ such that $\xi(m) \to 0$ as $m \to \infty$ and

$$\mathsf{E}(|X_0 - \mathsf{E}(X_0|\mathcal{G}^m_{-m})|) \leq \xi(m), \quad m \in \mathbb{N}_0$$

where \mathcal{G}_{-m}^m denotes the σ -field generated by { $V_t, -m \leq t \leq m$ }, then **X** is said to be near-epoch dependent on **V** (in \mathbb{L}^1 -norm),

or an 1-approximating functional of V, with approximating constants $\{\xi(m)\}$. Restricting f in this fashion so that it can be sufficiently well approximated by a finite-variate function is an idea that goes back to Ibragimov (1962). Under suitable regularity conditions, the strictly (and/or second-order) stationary, causal solutions of many time-series models are near-epoch dependent, including ARMA models, autoregressive conditionally heteroscedastic models, nonlinear autoregressive models, and nonlinear models that admit a Volterra series expansion, as are observables that arise in many dynamical systems (see Borovkova, Burton, and Dehling 2001; Davidson 2002, inter alia). Near-epoch dependence has the advantage of holding in cases where absolute regularity or strong mixing may not. For example, a causal linear process with absolutely summable coefficients and zero-mean iid noise is near-epoch dependent on the noise sequence; in comparison, strong mixing or absolute regularity additionally require the process to be invertible and the one-dimensional marginal distribution of the noise to have a sufficiently smooth Lebesgue density (see Doukhan 1994, sec. 2.3.1). In what follows, $\{\beta(k), k \in \mathbb{N}\}\$ denote the coefficients of absolute regularity of the base process V (defined analogously to those of **X**), and it is assumed that $\beta(k) \to 0$ as $k \to \infty$ at an appropriate rate. Hence, the near-epoch dependent process **X** is ergodic and strictly stationary but need not be absolutely regular or strongly mixing.

In view of the boundedness of the kernel ψ , the strong law of large numbers for *U*-statistics due to Aaronson et al. (1996, Theorem U) ensures that, under absolute regularity of **X**, T_n is strongly consistent for the parameter

$$\theta := \mathsf{E}[\psi(Y_1, Y_2, Y_3)] = \mathsf{P}(Y_1 + Y_2 - 2Y_3 > 0) - \mathsf{P}(Y_1 + Y_2 - 2Y_3 < 0),$$

where Y_1, Y_2 and Y_3 are independent random variables, independent of **X**, with common distribution function *F*. This is also true if **X** is strongly mixing or near-epoch dependent on an absolutely regular process, provided *F* is such that the points of discontinuity of ψ form a negligible set with respect to the joint distribution of (Y_1, Y_2, Y_3) . Note that T_n is not necessarily unbiased for θ under dependence; for example, $\mathsf{E}(T_n) = \theta + \mathcal{O}((9n)^{-1/2})$ if $\beta(k) = \mathcal{O}(k^{-\varrho})$ for some $\varrho \ge 1$ (see Han (2018, theor. 3.2)). The expectation of $\psi(Y_1, Y_2, Y_3)$ may be thought of as an index of skewness for *F*, with $\theta = 0$ for any continuous *F* satisfying (1).

In order to consider the asymptotic distribution of T_n , it is convenient to define a function $\psi_1 : \mathbb{R} \to \mathbb{R}$ by

$$\psi_1(x) := \mathsf{E}[\psi(x, Y_2, Y_3)] - \theta$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(x, y_2, y_3) dF(y_2) dF(y_3) - \theta, \quad x \in \mathbb{R},$

and put

$$\tau := \sum_{h=-\infty}^{\infty} \operatorname{cov}[\psi_1(X_0), \psi_1(X_h)].$$

The two-sided series above is convergent to a nonnegative sum under appropriate conditions on *F* and/or the dependence structure of **X**. Such conditions can be found in Theorem 1, which gives the limiting distribution (as $n \to \infty$) of the centered and normed transform $S_n := \sqrt{n}(T_n - \theta)$. Summability

of the coefficients of absolute regularity of **X** is sufficient for S_n to be asymptotically normal. Under the weaker strong-mixing condition, a suitable polynomial rate of decay of the mixing coefficients, finiteness of some related absolute moment of *F*, and some smoothness of ψ with respect *F* are required. More specifically, it will be assumed that there exist positive constants M, M', κ_0 and κ'_0 such that, for every $\kappa \in (0, \kappa_0)$ and $\kappa' \in (0, \kappa'_0)$, and for any triple of integers (t_1, t_2, t_3) such that $-\infty < t_1 < t_2 < t_3 < \infty$,

$$\mathsf{E}\left(\sup_{\|(x_1,x_2,x_3)-(Y_1,Y_2,Y_3)\|\leqslant\kappa}|\psi(x_1,x_2,x_3)-\psi(Y_1,Y_2,Y_3)|\right)\leqslant M\kappa, \quad (2)$$

$$\mathsf{E}\left(\sup_{|x_{t_1}-X'_{t_1}|\leqslant \kappa'} \left|\psi(x_{t_1},X_{t_2},X'_{t_3})-\psi(X'_{t_1},X_{t_2},X'_{t_3})\right|\right)\leqslant M'\kappa',\quad(3)$$

$$\mathsf{E}\left(\sup_{|x_{t_1}-X'_{t_1}|\leqslant \kappa'} \left|\psi(x_{t_1},X_{t_2},X_{t_3})-\psi(X'_{t_1},X_{t_2},X_{t_3})\right|\right)\leqslant M'\kappa',\quad(4)$$

where $\|\cdot\|$ denotes the Euclidean vector norm and $\{X'_t, t \in \mathbb{Z}\}$ are iid random variables that are independent of **X** and have distribution function *F*. The variation conditions (2)–(4) may be understood as a form of Lipschitz continuity of ψ with respect to the distribution of X_0 (see Fischer, Fried, and Wendler 2016). These conditions are also required under near-epoch dependence, along with suitable polynomial rates of decay for the approximating constants and for the coefficients of absolute regularity of the base process.

Theorem 1. Suppose one of the following sets of conditions is satisfied:

- (i) **X** is absolutely regular with $\sum_{k=1}^{\infty} \beta(k) < \infty$;
- (ii) **X** is strongly mixing, $E(|X_0|^{\gamma}) < \infty$ for some $\gamma > 0$, $\alpha(k) = O(k^{-\eta})$ for some $\eta > (2\gamma + 1)/\gamma$, and (2)-(4) hold;
- (iii) **X** is near-epoch dependent on an absolutely regular process **V**, $\tilde{\beta}(k) = \mathcal{O}(k^{-\nu})$ and $\xi(m) = \mathcal{O}(m^{-\nu-2})$ for some $\nu > 1$, and (2)-(4) hold.

Then, $\tau < \infty$ and, if $\tau > 0$, $\sigma^{-1}S_n \to \mathcal{N}(0, 1)$ in distribution as $n \to \infty$, where $\sigma := 3\sqrt{\tau}$.

Remark 1. As an absolutely regular process may be considered to be near-epoch dependent on itself, with $\xi(m) = 0$ for all $m \ge 0$, part (iii) of Theorem 1 contains a version of part (i). The reason for considering the absolutely regular case separately is that the central limit theorem for T_n can be obtained under weaker conditions than it is possible under the assumption of near-epoch dependence.

If $\tau = 0$ under the conditions of Theorem 1, then it is easily verified that $S_n \to 0$ in probability as $n \to \infty$. In the nondegenerate case where $\tau \neq 0$, although the distribution of S_n is asymptotically normal, inference about the parameter θ based on hypotheses tests or confidence sets is complicated by the fact that the asymptotic variance σ^2 is unknown and depends on the correlation structure of the underlying process **X**. We discuss next how these difficulties may be overcome by using suitable nonparametric estimators based on subsamples.

3. Subsampling-Based Inference

In this section, we consider the use of subsampling to estimate the distribution function and asymptotic variance of S_n and to construct confidence intervals (and hypotheses tests) for θ . We establish the asymptotic validity of subsampling in our setting and discuss data-driven procedures for selecting the subsample size.

3.1. Subsampling Estimators and Asymptotic Validity

For a fixed sample size *n* and an integer $\ell := \ell(n)$ satisfying $n > \ell \ge 3$, let

$$T_{\ell,i} := \frac{6}{\ell(\ell-1)(\ell-2)} \sum_{i \leq t_1 < t_2 < t_3 \leq i+\ell-1} \sum_{i \leq t_1, i_2, \dots, n-\ell+1} \psi(X_{t_1}, X_{t_2}, X_{t_3}),$$

so that, for each *i*, $T_{\ell,i}$ is a replicate of T_n based on the subsample $\{X_i, X_{i+1}, \ldots, X_{i+\ell-1}\}$. The subsampling estimator of the distribution function of S_n is given by the empirical distribution function associated with $\sqrt{\ell}(T_{\ell,1}-T_n), \ldots, \sqrt{\ell}(T_{\ell,n-\ell+1}-T_n)$, that is, by

$$H_{n,\ell}(x) := \frac{1}{n-\ell+1} \sum_{i=1}^{n-\ell+1} \mathbf{1} \left\{ \sqrt{\ell} (T_{\ell,i} - T_n) \leqslant x \right\},$$
$$x \in \mathbb{R},$$

where $1{A}$ denotes the indicator of an event *A*. The asymptotic variance of S_n may be estimated by

$$\hat{\sigma}_{n,\ell}^2 := \int_{-\infty}^{\infty} x^2 dH_{n,\ell}(x) - \left(\int_{-\infty}^{\infty} x dH_{n,\ell}(x)\right)^2$$
$$= \frac{\ell}{n-\ell+1} \sum_{i=1}^{n-\ell+1} T_{\ell,i}^2 - \ell \left(\frac{1}{n-\ell+1} \sum_{i=1}^{n-\ell+1} T_{\ell,i}\right)^2.$$

These estimators are consistent under suitable dependence conditions, provided the subsample size ℓ diverges to infinity with *n* but does so more slowly than *n*. The following is true when **X** is absolutely regular or strongly mixing.

Theorem 2. Suppose conditions (i) or (ii) of Theorem 1 are satisfied, $n^{-1}\ell(n) + \ell(n)^{-1} \to 0$ as $n \to \infty$, and $\tau > 0$. Then: (a) $\sup_{x \in \mathbb{R}} |H_{n,\ell}(x) - \mathsf{P}(S_n \leq x)| \to 0$ in probability as $n \to \infty$; (b) $\hat{\sigma}_{n,\ell}^2 \to \sigma^2$ in probability as $n \to \infty$.

Remark 2. Without invoking the asymptotic normality of S_n in Theorem 1, it can be shown that $\hat{\sigma}_{n,\ell}^2 \to \sigma^2$ in quadratic mean as $n \to \infty$, provided $\alpha(k) \to 0$ as $k \to \infty$, $\mathsf{E}(S_n^2) \to \sigma^2 \in (0, \infty)$ as $n \to \infty$, $\{S_n^4, n \ge 3\}$ is uniformly integrable, and $n^{-1}\ell(n) + \ell(n)^{-1} \to 0$ as $n \to \infty$ (see Fukuchi 1999, theor. 1(a)).

The subsampling estimators $H_{n,\ell}$ and $\hat{\sigma}_{n,\ell}^2$ are also consistent when **X** is near-epoch dependent on an absolutely regular process, as long as, for each fixed $x \in \mathbb{R}$, the indicator random variables $U_{\ell,i}(x) := \mathbf{1}\{S_{\ell,i} \leq x\}, i \in \{1, 2, ..., n - \ell + 1\}$, are such that

$$\frac{1}{n-\ell+1} \sum_{h=0}^{n-\ell} \left| \operatorname{cov}[U_{\ell,1}(x), U_{\ell,1+h}(x)] \right| \to 0 \quad \text{as } n \to \infty,$$
(5)

where $S_{\ell,i} := \sqrt{\ell}(T_{\ell,i} - \theta)$ is a replicate of S_n based on the subsample $\{X_i, X_{i+1}, \dots, X_{i+\ell-1}\}$.

Theorem 3. Suppose conditions (iii) of Theorem 1 are satisfied, $n^{-1}\ell(n) + \ell(n)^{-1} \to 0$ as $n \to \infty$, condition (5) holds, and $\tau > 0$. Then, the conclusions of Theorem 2 hold true.

Remark 3. Condition (5) is a mild memory condition for the subsample quantities $\{U_{\ell,i}(x)\}$, viewed as a process indexed by *i*, requiring their autocovariances to be strongly Cesàroconvergent to zero. Since near-epoch dependence is not necessarily preserved by measurable transformations, obtaining sufficient conditions for the limit (5) in terms of more primitive conditions on the near-epoch dependence characteristics of X is considerably more difficult than it is under strong-mixing or absolute regularity. However, if the subsample replicates $\{T_{\ell,i}, 1 \leq i \leq n - \ell + 1\}$ of T_n , viewed as a process indexed by *i*, retain the near-epoch dependence on V, then, for a fixed ℓ and each fixed $x \in \mathbb{R}$, $\{U_{\ell,i}(x)\}$ is itself near-epoch dependent on V, provided the indicator functions of half-infinite intervals $(-\infty, x]$ in \mathbb{R} satisfy some suitable continuity condition with respect to the distribution of $S_{\ell,1}$. It suffices, for example, to assume that the indicator function of $(-\infty, x]$ satisfies, uniformly in $x \in \mathbb{R}$, an 1-continuity condition (see Borovkova, Burton, and Dehling 2001, prop. 2.11) or a variation condition (see Wendler 2011, lem. 3.5) with respect to the distribution of $S_{\ell,1}$ (these conditions hold under continuity and Lipschitz continuity, respectively, of the distribution function of $S_{\ell,1}$). The covariance inequality in Borovkova, Burton, and Dehling (2001, lem. 2.18(i)) then ensured that $|\operatorname{cov}[U_{\ell,1}(x), U_{\ell,1+h}(x)]| \to 0$ as $h \to \infty$, from which (5) follows by the convergence lemma of Cesàro averages.

Theorems 2 and 3 justify the use of quantiles of $H_{n,\ell}$ to construct subsampling confidence intervals for θ . More specifically, for any given $\delta \in (0, 1)$, an (approximate) level- $(1 - \delta)$ equaltailed, two-sided confidence interval for θ is given by

$$\mathcal{C}_{n,\ell}^{(1)}(\delta) := \left[T_n - n^{-1/2} H_{n,\ell}^{-1}(1 - \delta/2), \ T_n - n^{-1/2} H_{n,\ell}^{-1}(\delta/2) \right]_{(6)}$$

where $\Psi^{-1}(y) := \inf\{x \in \mathbb{R} : \Psi(x) \ge y\}$ for an arbitrary nondecreasing function $\Psi : \mathbb{R} \to \mathbb{R}$. Alternatively, an (approximate) level- $(1 - \delta)$ symmetric, two-sided confidence interval for θ can be obtained as

$$\mathcal{C}_{n,\ell}^{(2)}(\delta) := \left[T_n - n^{-1/2} \bar{H}_{n,\ell}^{-1}(1-\delta), \ T_n + n^{-1/2} \bar{H}_{n,\ell}^{-1}(1-\delta) \right],\tag{7}$$

where $\bar{H}_{n,\ell}$ is the subsampling estimator of the distribution function of $|S_n|$, defined as

$$\bar{H}_{n,\ell}(x) := \frac{1}{n-\ell+1} \sum_{i=1}^{n-\ell+1} \mathbf{1} \left\{ \sqrt{\ell} \left| T_{\ell,i} - T_n \right| \leq x \right\},$$
$$x \in [0,\infty).$$

Symmetric confidence intervals are known to have improved coverage accuracy in many circumstances and can be shorter than equal-tailed intervals (see Hall 1988; Politis, Romano, and Wolf 1999, chap. 10). The following result shows that the subsampling confidence intervals defined in Equations (6) and (7) are consistent in level, in the sense of having asymptotically correct coverage.

Corollary 1. Suppose the assumptions of Theorem 2 or Theorem 3 are satisfied. Then, for $s \in \{1, 2\}$ and any $\delta \in (0, 1)$, $\mathsf{P}(\mathcal{C}_{n\ell}^{(s)}(\delta) \ni \theta) \to 1 - \delta \text{ as } n \to \infty$.

Another possibility for constructing a confidence interval for θ is to rely on the subsampling variance estimator $\hat{\sigma}_{n,\ell}^2$ and the Gaussian asymptotic approximation to the distribution of S_n , exploiting the fact that, under the conditions of Theorem 2 or Theorem 3, $\hat{\sigma}_{n,\ell}^{-1}S_n \rightarrow \mathcal{N}(0,1)$ in distribution as $n \rightarrow \infty$. A two-sided confidence interval for θ , with asymptotic coverage $1 - \delta$, may thus be obtained as

$$\mathcal{C}_{n,\ell}^{(3)}(\delta) := \left[T_n + n^{-1/2} \hat{\sigma}_{n,\ell} \Phi^{-1}(\delta/2), \\ T_n - n^{-1/2} \hat{\sigma}_{n,\ell} \Phi^{-1}(\delta/2) \right],$$
(8)

where Φ denotes the distribution function of an $\mathcal{N}(0, 1)$ random variable.

Remark 4. An alternative estimator of σ^2 that may be used in place of $\hat{\sigma}_{n,\ell}^2$ to construct a 'Gaussian' confidence interval like (8) is

$$\tilde{\sigma}_{n,\omega}^2 := 9 \sum_{h=1-n}^{n-1} K(\omega^{-1} |h|) \left(n^{-1} \sum_{t=1}^{n-|h|} \tilde{\psi}_1(X_t) \tilde{\psi}_1(X_{t+|h|}) \right),$$

where $K : [0, \infty) \to \mathbb{R}$ is a bounded, measurable weighting function with K(0) = 1, $\omega := \omega(n) > 0$ is a bandwidth parameter such that $n^{-1/2}\omega(n) + \omega(n)^{-1} \to 0$ as $n \to \infty$, and $\tilde{\psi}_1$ is the empirical analogue of ψ_1 given by

$$\tilde{\psi}_1(x) := n^{-2} \sum_{t_2=1}^n \sum_{t_3=1}^n \psi(x, X_{t_2}, X_{t_3}) - n^{-3} \sum_{t_1=1}^n \sum_{t_2=1}^n \sum_{t_3=1}^n \psi(X_{t_1}, X_{t_2}, X_{t_3}), \quad x \in \mathbb{R}.$$

Estimators of this type were shown by Dehling et al. (2017) and Fischer (2017) to be consistent (under near-epoch dependence conditions stronger than those in Theorem 1). Their practical use requires an appropriate choice of bandwidth ω for a fixed sample size n, a problem not too dissimilar to choosing the subsample size ℓ for the estimator $\hat{\sigma}_{n,\ell}^2$. Since we are interested in subampling-based inference on θ , we will not consider weighted-autocovariances estimators like $\tilde{\sigma}_{n,\omega}^2$ here.

Remark 5. Although our discussion focuses primarily on confidence intervals for θ (because, unlike tests, they are informative about the degree of uncertainty associated with a point estimate of θ), tests of hypotheses about θ can be easily constructed using Equations (6)–(8). By the familiar duality between hypothesis tests and confidence sets, an asymptotically level- δ equal-tailed test for testing the null hypothesis $\theta = 0$ versus the alternative $\theta \neq 0$ rejects if, and only if, $C_{n,\ell}^{(1)}(\delta)$ does not contain zero, that is, if $\sqrt{n}T_n < H_{n,\ell}^{-1}(\delta/2)$ or $\sqrt{n}T_n > H_{n,\ell}^{-1}(1-\delta/2)$. Similarly, an asymptotically level- δ symmetric test rejects if, and only if, zero

is not a member of $C_{n,\ell}^{(2)}(\delta)$, that is, if $\sqrt{n} |T_n| > \bar{H}_{n,\ell}^{-1}(1-\delta)$. The asymptotically level- δ test corresponding to $C_{n,\ell}^{(3)}(\delta)$ rejects when $\sqrt{n}|\hat{\sigma}_{n,\ell}^{-1}T_n| > \Phi^{-1}(1-\delta/2)$.

Remark 6. A test of $\theta = 0$ versus $\theta \neq 0$ is viewed in Davis and Quade (1978) and Randles et al. (1980) as a test of the symmetry hypothesis (1) against a general asymmetric alternative corresponding to $F(\mu - x_0) + F(\mu + x_0) \neq 1$ for some $x_0 \in [0,\infty)$. Since $\theta = 0$ is necessary but not sufficient for (1) to hold, it is clear that a test that rejects for large values of $|T_n|$ cannot be consistent against asymmetric distributions for which $\theta = 0$. Randles et al. (1980) noted, however, that such asymmetric distributions form a small class. Difficulties of this kind are common to inferential procedures that rely on a necessary condition for symmetry, as is also the case, for instance, with tests based on empirical analogues of measures of skewness involving the expectation of an odd, measurable function of $X_0 - E(X_0)$ (e.g., Bai and Ng 2005; Psaradakis 2016) or the difference $E(X_0) - F^{-1}(1/2)$ (e.g., Lyubchich et al. 2016). The result in Kochar (1992, corol. 2.3) provides a characterization of the class of continuous distribution functions for which $\theta \neq 0$ and against which a test for symmetry based on T_n will be consistent. Specifically, with $\tilde{F}(x) := \mathsf{P}(-X_0 \leq x) = 1 - F(-x)$ for $x \in \mathbb{R}$, a sufficient condition for $\theta < 0$ ($\theta > 0$) is that *F* strictly precedes (succeeds) \tilde{F} in van Zwet's convex-transform order, in the sense that the function $x \mapsto (\tilde{F}^{-1} \circ F)(x) =$ $-F^{-1}(1-F(x))$ is strictly convex (concave) on the support of *F*. It may, therefore, be more accurate to view a test based on T_n as a test of symmetry of F (about an unspecified center) against the alternative that F is more skewed to the right than \tilde{F} (F strictly succeeds \tilde{F} in the convex-transform order) or vice versa. Note that F being more skewed to the right (left) than F is equivalent to F being skewed to the right (left), in the sense that there exists a symmetric distribution function on \mathbb{R} which strictly precedes (succeeds) F in the convex-transform order.

Remark 7. The univariate procedures discussed here also provide a means of assessing whether the common (marginal) distribution of a strictly stationary sequence of \mathbb{R}^p -valued ($p \in$ \mathbb{N}) random (column) vectors { $\mathbf{Z}_t, t \in \mathbb{Z}$ } is centrally symmetric about some unspecified point $\mu \in \mathbb{R}^p$, that is, whether $\mathbf{Z}_0 - \mu$ and $\mu - Z_0$ are identically distributed. This may be done by exploiting the fact that central symmetry of the distribution of Z_0 about μ is equivalent to symmetry about the origin of the distribution of $a^{\mathsf{T}}(\mathsf{Z}_0 - \mu)$ for any fixed $a \in \mathbb{R}^p$ with ||a|| = 1, where a^{T} denotes the transpose of a (e.g., Zuo and Serfling 2000, lem. 2.1). Central symmetry of Z_0 may, therefore, be assessed by using a U-statistic based on triples of $\{a^{\mathsf{T}} \mathbf{Z}_t\}$ for some appropriately chosen *a* (e.g., triples of the least symmetric one-dimensional projection $a^{\mathsf{T}} \mathbf{Z}_t$). Such an approach to detecting deviations from symmetry of dependent multivariate data will be investigated in detail elsewhere.

3.2. Choice of Subsample Size

An important issue that arises in the use of subsampling techniques in practice is the selection of a reasonable subsample size $\ell := \ell(n)$ for a given sample size *n*, a problem akin to that

of selecting the block length for blockwise bootstrap methods (see, e.g., Lahiri 2003, chap. 7). The choice of ℓ matters because the size of subsamples can affect significantly the performance of subsampling estimators in finite samples. Unfortunately, the asymptotic results in Theorems 2 and 3 give no guidance for the selection of an appropriate subsample size beyond the requirement that it grows at a slower rate than *n*. To circumvent this difficulty, we consider here two data-driven methods for choosing a subsample size $\ell^* := \ell^*(n)$ from a collection of candidate subsample sizes $\Lambda_n := \{\ell \in \mathbb{N} : 2 < \ell_1(n) \leq \ell \leq \ell_2(n) < n\}$, based on the discussion in Politis, Romano, and Wolf (1999, Sec. 9.3), namely a "calibration" method and a "minimum volatility" method.

The basic idea behind the calibration method is to adjust the subsample size so that a subsampling confidence interval of a fixed nominal level has coverage probability close to the nominal level in a sample of a given size. The procedure is described formally in Algorithm 1.

Algorithm 1 (Calibration).

- 1.1. For a large $B \in \mathbb{N}$ and some 0 < l < n, generate pseudosamples $\mathbf{X}_n^{*b} := \{X_{n,1}^{*b}, \dots, X_{n,n}^{*b}\}, b \in \{1, 2, \dots, B\}$, of size *n* by means of a block-resampling scheme based on \mathbf{X}_n , with (expected) block length *l*.
- 1.2. For a fixed $\delta \in (0, 1)$, each $b \in \{1, 2, ..., B\}$ and each $\ell \in \Lambda_n$, construct a level- (1δ) subsampling confidence interval $[I_{n,\ell,1}^{*b}, I_{n,\ell,2}^{*b}]$ for θ using \mathbf{X}_n^{*b} in place of \mathbf{X}_n .
- 1.3. For each $\ell \in \Lambda_n$, compute $\hat{\pi}_{n,\delta}(\ell) := B^{-1} \sum_{b=1}^B \mathbf{1}\{I_{n,\ell,1}^{*b} \leq T_n \leq I_{n,\ell,2}^{*b}\}$.
- 1.4. Set $\ell^* = \arg \min_{\ell \in \Lambda_n} \left| \hat{\pi}_{n,\delta}(\ell) (1-\delta) \right|.$

There are several block-resampling schemes that may be used to construct pseudo-samples \mathbf{X}_n^{*b} from a model-free approximation to the distribution of X_n (see, e.g., Lahiri 2003, pp. 25– 36). These are required in order to obtain an estimate $\hat{\pi}_{n,\delta}$ of a calibration function $\ell \mapsto \pi_{n,\delta}(\ell)$, where $\pi_{n,\delta}(\ell)$ is the coverage probability of a confidence interval for θ with nominal level $1-\delta$ based on subsamples of size ℓ . In Sections 4 and 5, we rely on the resampling scheme associated with the stationary bootstrap of Politis and Romano (1994b). This amounts to constructing each \mathbf{X}_n^{*b} from overlapping blocks of adjacent observations from the periodically extended sequence $\{X_{t \pmod{n}}, t \in \mathbb{N}\},\$ with $X_0 = X_n$, the random length of each block being geometrically distributed on \mathbb{N} with mean *l*. Unlike other blockresampling schemes, the stationary bootstrap produces pseudoobservations \mathbf{X}_n^{*b} that are strictly stationary (conditionally on \mathbf{X}_n) and is less sensitive to misspecification of the (expected) block length. The asymptotic validity of the stationary bootstrap for U-statistics (of degree 2) was established by Hwang and Shin (2015) under strong-mixing conditions. In the implementation of the procedure, we set $l^{-1} = \min\{|2\hat{\rho}_n/(1-\hat{\rho}_n^2)|^{-2/3}n^{-1/3}, 1\},\$ where $\hat{\rho}_n$ is the lag-1 sample autocorrelation of \mathbf{X}_n (see Carlstein 1986, p. 1178). Since the choice of the expected block length is of the second-order importance in the context of calibration, this approach provides a simple data-dependent choice for l. In order to keep the cost of computations at a manageable level, we set B = 100 in the simulations in Section 4, while B = 1000 is used for the real-data applications in Section 5.

The minimum-volatility approach to choosing ℓ^* amounts to constructing subsampling confidence intervals of a fixed nominal level for different subsample sizes and then identifying a region where the intervals do not exhibit substantial variability. A formal description of the procedure in our setting is given in Algorithm 2.

Algorithm 2 (Minimum Volatility).

- 2.1. For a fixed $\delta \in (0, 1)$, a small $d \in \mathbb{N}$, and for each integer ℓ such that $2 < \ell_1(n) d \leq \ell \leq \ell_2(n) + d < n$, construct a level- (1δ) subsampling confidence interval $[I_{n,\ell,1}, I_{n,\ell,2}]$ for θ .
- 2.2. For each $\ell \in \Lambda_n$, compute the volatility index

$$D_{n,\delta}(\ell) := \sum_{s=1}^{2} \left\{ \frac{1}{2d} \sum_{j=-d}^{d} \left(I_{n,\ell+j,s} - \bar{I}_{n,\ell,s} \right)^2 \right\}^{1/2},$$

where $\bar{I}_{n,\ell,s} := (1+2d)^{-1} \sum_{j=-d}^{d} I_{n,\ell+j,s}$. 2.3. Set $\ell^* = \arg \min_{\ell \in \Lambda_n} D_{n,\delta}(\ell)$.

Minimizing the volatility of the endpoints of subsampling confidence intervals, as in Algorithm 2, is arguably more attractive computationally than the calibration approach in Algorithm 1, especially in the context of Monte Carlo simulations, because it does not require the use of a bootstrap procedure to estimate confidence interval coverage. Since the algorithm is relatively insensitive to the choice of *d*, we set d = 2 in Sections 4 and 5, following the recommendation in Politis, Romano, and Wolf (1999, pp. 199–200) and Romano and Wolf (2001, p. 1297).

Remark 8. In Algorithms 1 and 2, and in their implementations in Sections 4 and 5, we consider all integers in the interval $[\ell_1(n), \ell_2(n)]$ as candidate subsample sizes. An appropriate subset of Λ_n may alternatively be used in order to reduce the computational burden. Additionally, the algorithm given in Monahan (1984) may be used to reduce the complexity of computing the values of triples *U*-statistics, while algorithms analogous to those discussed in Giacomini, Politis, and White (2013) could be useful in the context of Monte Carlo experiments, especially when calibration is required.

We end this subsection by noting that, under appropriate conditions, the conclusions of Theorem 2(a) and Corollary 1 remain valid when a random (data-dependent) subsample size such as ℓ^* is used instead of a fixed subsample size. Inspection of the proof of Theorem 4.1 of Politis, Romano, and Wolf (2001) shows that, for the consistency results to go through in this case, it suffices that, in addition to the assumptions already needed to guarantee asymptotic normality of S_n (with $\sigma > 0$): (i) Λ_n is such that, as $n \to \infty$, $\ell_1(n) \to \infty$ and $n^{-1}\ell_2(n) \to 0$; (ii) for each fixed $x \in \mathbb{R}$ and every $\epsilon > 0$, the limit, as $n \to \infty$, of

$$\left(\ell_2(n) - \ell_1(n) + 1\right) \sup_{\ell \in \Lambda_n} \mathsf{P}\left(\left|\frac{1}{n-\ell+1} \sum_{i=1}^{n-\ell+1} \tilde{U}_{\ell,i}(x)\right| > \epsilon\right)$$
(9)

is zero, where $\tilde{U}_{\ell,i}(x) := \mathbf{1}\{S_{\ell,i} \leq x\} - \mathsf{P}(S_{\ell,1} \leq x).$

Under absolute regularity or strong mixing of X, the concentration inequality due to Bosq (1996, theor. 1.3(1), p. 25)

provided an upper bound for the quantity in (9) that tends to zero as $n \to \infty$, as long as $\alpha(k) = \mathcal{O}(k^{-\varrho})$ for some $\varrho > 1$ (see Politis, Romano, and Wolf 2001, theor. 4.1). An analogous bound may be obtained, via an exponential tail inequality for partial sums, if the random variables $\{\tilde{U}_{\ell,i}(x), 1 \leq i \leq n-\ell+1\}$ form a near-epoch dependent sequence on V with suitable polynomial rates of decay for its approximating constants and for the coefficients of absolute regularity $\{\hat{\beta}(k)\}\$ of V. To see how such an inequality may be established, note that, if $\{U_{\ell,i}(x)\}$ is nearepoch dependent on V, when viewed as a process indexed by $i \in$ \mathbb{N} at any fixed ℓ and x, then $\{\tilde{U}_{\ell,i}(x), \mathcal{G}_{-\infty}^i\}$ is a strictly stationary mixingale (in \mathbb{L}^1 -norm), $\mathcal{G}^i_{-\infty}$ being the σ -field generated by $\{V_t, t \leq i\}$; in other words, there exists a sequence of nonnegative constants $\{\varphi(m), m \in \mathbb{N}_0\}$ converging to zero such that, for each $m \in \mathbb{N}_0$, $\mathsf{E}(|\mathsf{E}(\tilde{U}_{\ell,1}(x)|\mathcal{G}_{-\infty}^{1-m})|) \leq \varphi(m)$ and $\mathsf{E}(|\tilde{U}_{\ell,1}(x) - \mathcal{G}_{-\infty}^{1-m})|) \leq \varphi(m)$ $\mathsf{E}(\tilde{U}_{\ell,1}(x)|\mathcal{G}_{-\infty}^{1+m})|) \leq \varphi(m+1)$. Moreover, since $\tilde{U}_{\ell,1}(x)$ is integrable to any order, the rate of convergence of $\{\varphi(m)\}$ is the same as the slower of the rates at which $\{\beta(k)\}\$ and the approximating constants of $\{U_{\ell,i}(x)\}$ approach zero (see Davidson 1994, theor. 17.5(i), p. 264). Therefore, provided $\sum_{m=0}^{\infty} \varphi(m) < \infty$, it follows by Theorem 16.6 in Davidson (1994, p. 250) that $\tilde{U}_{\ell,i}(x)$ can be represented in the form $\tilde{U}_{\ell,i}(x) = W_i + Z_i - Z_{i+1}$, where $\{W_i, \mathcal{G}_{-\infty}^i\}$ is a strictly stationary martingale difference sequence and $\{Z_i\}$ is a strictly stationary sequence of integrable random variables; furthermore, $\{W_i\}$ and $\{Z_i\}$ are uniformly bounded by virtue of the uniform boundedness of $\{U_{\ell,i}(x)\}$ (see Vaněček 2006, p. 704). Hence, arguing as in the proof of Vaněček (2006, lem. 8) and using the Azuma-Hoeffding inequality for martingale differences (e.g., Davidson 1994, theor. 15.20, p. 245), it can be deduced that there exist constants $C_1 > 0$ and $C_2 > 0$ such that, for any $\epsilon > 0$,

$$\mathsf{P}\left(\left|\frac{1}{n-\ell+1}\sum_{i=1}^{n-\ell+1}\tilde{U}_{\ell,i}(x)\right| > \epsilon\right) \leqslant C_1 \exp(-C_2[n-\ell+1]\epsilon^2).$$

Consequently, (9) is bounded above by $C'_1\ell_2(n) \exp(-C'_2[n - \ell_2(n) + 1]\epsilon^2)$, for some appropriate constants $C'_1 > 0$ and $C'_2 > 0$, which approaches zero as $n \to \infty$ and $n^{-1}\ell_2(n) \to 0$.

4. Monte Carlo Simulations

In this section, we report and discuss the results of a simulation study of the finite-sample properties of confidence intervals for the skewness parameter θ .

4.1. Experimental Design

The experimental design is similar to that in Psaradakis and Vávra (2019), and includes both linear and nonlinear datagenerating mechanisms. Specifically, we consider artificial data generated according to the following models ($t \in \mathbb{Z}$):

$$\begin{split} & \text{M1: } X_t = 0.8X_{t-1} + \varepsilon_t, \\ & \text{M2: } X_t = 0.6X_{t-1} - 0.5X_{t-2} + \varepsilon_t, \\ & \text{M3: } X_t = 0.6X_{t-1} + 0.3\varepsilon_{t-1} + \varepsilon_t, \\ & \text{M4: } X_t = 0.9X_{t-1}\mathbf{1}\{|X_{t-1}| \leq 1\} - 0.3X_{t-1}\mathbf{1}\{|X_{t-1}| > 1\} + \varepsilon_t, \\ & \text{M5: } X_t = \zeta_t\varepsilon_t, \quad \zeta_t^2 = 0.05 + (0.1\varepsilon_{t-1}^2 + 0.85)\zeta_{t-1}^2, \\ & \text{M6: } X_t = 0.7X_{t-2}\varepsilon_{t-1} + \varepsilon_t. \end{split}$$

In each case, $\{\varepsilon_t\}$ are iid random variables whose distribution is either $\mathcal{N}(0,1)$ (labeled N in the various tables) or generalized lambda, with quantile function $u \mapsto \lambda_1 + \lambda_2^{-1} \{ u^{\lambda_3} - (1 - u^{\lambda_3}) \}$ $(u)^{\lambda_4}$, $u \in (0, 1)$, recentered at zero and rescaled to have unit variance. The values of $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ used in the experiments, taken from Randles et al. (1980), can be found in Table 1, along with the associated classical measures of skewness and kurtosis based on standardized third and fourth cumulants; distributions S1-S3 are symmetric, whereas A1-A4 are asymmetric. Models M1-M3 define ARMA processes, the one-dimensional marginal distribution of which is symmetric if ε_t is symmetrically distributed. Models M4, M5 and M6 define a self-exciting threshold autoregressive process, a generalized autoregressive conditionally heteroscedastic process, and a bilinear process, respectively; in all three cases, the third cumulant of X_t is zero if ε_t is symmetric about zero (Pemberton and Tong 1981; Martins 1999). Note that models M1-M6 admit geometrically ergodic Markovian representations and, hence, their strictly stationary solutions are absolutely regular (and strongly mixing) with geometrically decaying mixing coefficients (see Mokkadem 1988, theor. 1; Chan et al. 1985, theor. 2.3; Francq and Zakoïan 2006, theor. 3; Doukhan 1994, corol. 1, p. 98). All six processes $\{X_t\}$ can also be shown to be near-epoch dependent on the noise sequence $\{\varepsilon_t\}$ with approximating constants that decline at geometric rates (see Davidson 2002).

For each design point, 1000 independent realizations of $\{X_t\}$ of length 100 + *n*, with $n \in \{100, 200\}$, are generated. The first 100 data points of each realization are discarded to minimize initialization effects and the remaining *n* data points are used to compute the confidence intervals for θ defined in Equations (6)–(8). The subsample size is selected by means of

Table 1. Noise distributions.

	λ_1	λ2	λ_3	λ_4	Skewness	Kurtosis
N	-	-	-	-	0.0	3.0
S1	0.000000	-1.000000	-0.080000	-0.080000	0.0	6.0
S2	0.000000	-0.397912	-0.160000	-0.160000	0.0	11.6
S3	0.000000	-1.000000	-0.240000	-0.240000	0.0	126
A1	0.000000	-1.000000	-0.007500	-0.030000	1.5	7.5
A2	0.000000	-1.000000	-0.100900	-0.180200	2.0	21.2
A3	0.000000	-1.000000	-0.001000	-0.130000	3.2	23.8
A4	0.000000	-1.000000	-0.000100	-0.170000	3.9	40.7

the bootstrap-based calibration algorithm and the minimumvolatility algorithm described in Section 3.2, with $\ell_1(n) = \lfloor (1/2)\sqrt{n} \rfloor$ and $\ell_2(n) = \lfloor (5/2)\sqrt{n} \rfloor$, where $\lfloor x \rfloor$ denotes the greatest integer that does not exceed $x \in \mathbb{R}$; these values are in line with the recommendation of Romano and Wolf (2001, p. 1297).

4.2. Simulation Results

Simulation results over all 24 design points under which the distribution of X_t is symmetric are summarized graphically in Figure 1. This shows boxplots of the estimated coverage probabilities (in percentage) of various confidence intervals for θ , of nominal level $1 - \delta = 0.95$, computed as the percentage of Monte Carlo replications in which each confidence interval correctly includes $\theta = 0$. The top and bottom of each colored box represent the 25th and 75th percentiles, respectively, of the estimated coverage probabilities, the black diamond inside the box indicates the mean value, and the whiskers indicate the 10th and 90th percentiles. The confidence intervals considered are: (i) the equal-tailed and symmetric subsampling intervals $C_{n,\ell}^{(1)}(\delta)$, with subsample size determined by means of the calibration method (labelled $C_{CA}^{(1)}$, $C_{CA}^{(2)}$, and $C_{CA}^{(3)}$, respectively, in the figures and tables); (ii) the corresponding intervals with subsample size determined by means of the calibration (labelled $C_{MV}^{(1)}$, $C_{MV}^{(2)}$, and $C_{MV}^{(3)}$, respectively). Detailed results for individual design points can be found in Table 4 in Appendix B.

It is clear that symmetric subsampling confidence intervals outperform all other competitors when the subsample size is selected by means of the calibration method, having coverage probabilities which are close to the nominal 0.95 level for the vast majority of design points. Selecting the subsample size for such intervals by minimizing the volatility of their endpoints generally leads to somewhat lower coverage, but without the magnitude of the coverage errors making the intervals unattractive for applications. The confidence interval based on the Gaussian large-sample approximation, used in conjunction with the subsampling variance estimator $\hat{\sigma}_{n,\ell}^2$ and the calibration method, is also a good competitor and often outperforms equal-tailed subsampling confidence intervals. The latter tend

Figure 1. Monte Carlo results under symmetry; estimated probabilities (in percentage) that 95% confidence intervals contain $\theta = 0$.

Figure 2. Monte Carlo results under asymmetry; estimated probabilities (in percentage) that 95% confidence intervals do not contain $\theta = 0$.

to undercover somewhat, the problem being more pronounced when the subsample size is determined via the minimumvolatility method.

Simulation results over all 24 design points under which the distribution of X_t is asymmetric are summarized graphically in Figure 2. This show boxplots of the estimated probabilities (in percentage) of $\theta = 0$ being excluded from confidence intervals for θ (of nominal level 0.95), computed as the percentage of Monte Carlo replications in which $\theta = 0$ falls outside each of the confidence intervals. Detailed results for individual design points can be found in Table 5 in Appendix B. Notwithstanding the fact that $\theta = 0$ is not necessarily precluded by asymmetry, the simulation results show that the ability of the various confidence intervals to exclude the value of θ which is typically consistent with symmetry is generally high, with no particular confidence interval dominating. As expected, improved performance is observed with increasing skewness and leptokurtosis in the noise distribution, as well as with an increasing sample size.

5. Real-Data Examples

In this section, we illustrate the practical use of the proposed methods by analyzing two real-world datasets.

5.1. Output Growth

In our first illustrative example, we investigate the distributional symmetry of real gross domestic product (GDP), an economic variable analyzed in many studies of the asymmetric behavior of business cycles (see, inter alia, DeLong and Summers 1986; Verbrugge 1997; Razzak 2001; Narayan and Popp 2009; Psaradakis 2016). Our dataset consists of time series on real GDP from 15 OECD countries, representing approximately 35% of the world real GDP (as measured in constant 2011 U.S. Dollars). All time series are quarterly, seasonally adjusted, and span the period 1961:1 to 2018:4 (232 observations). The data can be downloaded from the OECD website (*https://stats.oecd.org/*).

DeLong and Summers (1986) and Sichel (1993) characterized asymmetry of the business cycle by asymmetry of the one-dimensional marginal distribution of the growth rate of a measure of economic output. This type of asymmetry is typically referred to as "growth-rate" or "steepness" asymmetry (contractions are steeper than expansions, or vice versa), and is an example of what Ramsey and Rothman (1996) classified as "longitudinal" asymmetry (asymmetry in the direction of movement of the business cycle). Our analysis is based, therefore, on the quarterly growth rates of real GDP.

For each time series, we compute the subsampling *p*-value for an equal-tailed test of the null hypothesis $\theta = 0$ vs. the alternative $\theta \neq 0$, defined as $P_{n,\ell}^{(1)} := \min\{2P_{n,\ell}^+, 2(1 - P_{n,\ell}^+)\}$, where

$$P_{n,\ell}^{+} := \frac{1}{n-\ell+1} \sum_{i=1}^{n-\ell+1} \mathbf{1} \left\{ \sqrt{\ell} (T_{\ell,i} - T_n) \ge \sqrt{n} T_n \right\},\,$$

as well as the subsampling *p*-value for the corresponding symmetric test, defined as

$$P_{n,\ell}^{(2)} := \frac{1}{n-\ell+1} \sum_{i=1}^{n-\ell+1} \mathbf{1} \left\{ \sqrt{\ell} \left| T_{\ell,i} - T_n \right| \ge \sqrt{n} \left| T_n \right| \right\}.$$

As in the construction of confidence intervals for θ , the subsampling *p*-values are based on subsample statistics centered at T_n , as recommended by Berg, McMurry, and Politis (2010).

In each case, the subsample size ℓ is determined by calibrating the coverage probability of the corresponding subsampling confidence interval for θ (of nominal level 0.95) or by minimizing the volatility of the endpoints of such an interval (see Section 3.2); as in the Monte Carlo experiments, $\ell_1(n) = \lfloor (1/2)\sqrt{n} \rfloor = 7$ and $\ell_2(n) = \lfloor (5/2)\sqrt{n} \rfloor = 37$. The resulting *p*-values are labeled $P_{CA}^{(1)}$, $P_{CA}^{(2)}$, $P_{MV}^{(1)}$ and $P_{MV}^{(2)}$ in Table 2.

On the basis of symmetric subsampling *p*-values $P_{CA}^{(2)}$, with the subsample size selected via the calibration method (the best performing combination in our simulations), evidence in favor of asymmetry in real GDP growth rates, at the conventional 0.05 significance level, is found only for Australia and Korea; the test rejects for Japan too if *p*-values $P_{CA}^{(2)}$ obtained via the minimumvolatility method are used instead. The subsampling *p*-values $P_{CA}^{(1)}$ for equal-tailed tests additionally reject for Italy, and also for France if $P_{MV}^{(1)}$ are used. We conclude, therefore, that steepness

Table 2. Empirical results (output growth).

	$P_{CA}^{(1)}$	$P_{CA}^{(2)}$	$P_{MV}^{(1)}$	$P_{MV}^{(2)}$
Australia	0.000	0.019	0.000	0.005
Belgium	0.378	0.443	0.167	0.500
Canada	0.462	0.527	0.151	0.599
Finland	0.391	0.315	0.304	0.253
France	0.124	0.230	0.010	0.286
Italy	0.000	0.117	0.028	0.059
Japan	0.027	0.095	0.000	0.014
Korea	0.000	0.014	0.000	0.000
Netherlands	0.500	0.648	0.352	0.783
Norway	0.201	0.137	0.071	0.096
Portugal	0.391	0.489	0.859	0.485
Spain	0.391	0.600	0.201	0.576
Sweeden	0.161	0.302	0.215	0.306
United Kingdom	0.951	0.805	0.995	0.922
United States	0.871	0.762	0.709	0.767

Table 3. Empirical results (asset returns).

	$P_{CA}^{(1)}$	$P_{CA}^{(2)}$	$P_{MV}^{(1)}$	$P_{MV}^{(2)}$
Amsterdam	0.000	0.000	0.000	0.000
Frankfurt	0.000	0.000	0.000	0.002
Hong Kong	0.000	0.000	0.000	0.000
London	0.463	0.332	0.406	0.313
New York	0.076	0.067	0.021	0.075
Paris	0.022	0.026	0.008	0.006
Singapore	0.251	0.267	0.198	0.240
Tokyo	0.000	0.000	0.000	0.000

does not appear to be a universal characteristic of international business cycles.

We note that Verbrugge (1997) and Razzak (2001) also used a triples *U*-statistic to test for symmetry of the business cycle. The former relied on Monte Carlo critical values for the implementation of the test, assuming that the data-generating mechanism is an ARMA model with symmetric iid noise, while the latter treated the data as independent. By contrast, the subsamplingbased tests do not rely on any parametric model of the dependence structure of the data.

5.2. Asset Returns

In our second example, we examine the distributional symmetry of returns of eight major equity indices. The dataset is taken from Franses and van Dijk (2000) (and is available at *https://sites. google.com/view/dickvandijk/nltsmef*). It comprises of weekly observations (recorded on Wednesdays) on price indices of the following stock exchanges: Amsterdam (EOE), Frankfurt (DAX), Hong Kong (Hang Seng), London (FTSE 100), New York (S&P 500), Paris (CAC 40), Singapore (FTSE ST All Share), and Tokyo (Nikkei 225). The data cover the period from January 6, 1986 to December 31, 1997 (626 observations), except for the CAC index, for which the data are from July 9, 1987 to December 31, 1997 (547 observations). The analysis is based on the weekly logarithmic returns of each index.

For each time series of returns, we compute the subsampling *p*-values $P_{CA}^{(1)}$, $P_{CA}^{(2)}$, $P_{MV}^{(1)}$ and $P_{MV}^{(2)}$ defined in Section 5.1, with $\ell_1(n) = \lfloor (1/2)\sqrt{n} \rfloor = 12$ and $\ell_2(n) = \lfloor (5/2)\sqrt{n} \rfloor = 62$ ($\ell_1(n) = 11$ and $\ell_2(n) = 58$ for CAC). According to the results reported in Table 3, when using symmetric subsampling

p-values $P_{CA}^{(2)}$, with the subsample size selected via the calibration method, the null hypothesis $\theta = 0$ is rejected (at the conventional 0.05 significance level) in favor of the alternative $\theta \neq 0$ for all stock exchanges except London, New York, and Singapore. Symmetry is rejected in the case of New York too if the equal-tailed subsampling *p*-value $P_{MV}^{(1)}$, with the subsample size selected via the minimum-volatility method, is used. We conclude, therefore, that there is significant evidence of asymmetry in the returns of international equity indices. This is consistent with the often expressed view that asymmetry of the marginal distribution of asset returns is a stylized empirical fact (e.g., Cont 2001), but is in contrast to the conclusion reached by Peiró (1999), who, using different techniques, reports much weaker evidence against symmetry for (a different set of) daily index returns.

6. Conclusion

This article has considered using a U-statistic based on data triples to assess symmetry of the one-dimensional marginal distribution of strictly stationary random processes satisfying suitable weak dependence conditions. The results given here allow for absolutely regular processes, strongly mixing process, and near-epoch dependent processes with an absolutely regular base. We have discussed how subsampling may be used to draw asymptotically valid inferences about the target skewness parameter. A simulation study has demonstrated that symmetric subsampling confidence intervals based on a data-dependent subsample size determined via calibration have good finitesample properties and generally outperform equal-tailed subsampling intervals and confidence intervals based on a Gaussian large-sample approximation. Empirical illustrations using time series of output growth rates and stock index returns have also been discussed.

The related problem of assessing conditional symmetry of a random process around a parametric or nonparametric function using a triples-based *U*-statistic is certainly worthy of consideration. Such an extension is nontrivial, not least because the kernel of the relevant triples statistic will typically depend on unknown parameters that have to be estimated. We leave this topic for future research.

Appendix A: Proofs

Proof of Theorem 1: By Hoeffding's decomposition of a *U*-statistic (e.g., Serfling 1980, pp. 177–178),

$$S_{n} = \frac{3}{\sqrt{n}} \sum_{t=1}^{n} \psi_{1}(X_{t}) + \frac{6}{\sqrt{n}(n-1)} \sum_{1 \leq t_{1} < t_{2} \leq n} \psi_{2}(X_{t_{1}}, X_{t_{2}}) + \frac{6}{\sqrt{n}(n-1)(n-2)} \sum_{1 \leq t_{1} < t_{2} < t_{3} \leq n} \psi_{3}(X_{t_{1}}, X_{t_{2}}, X_{t_{3}}) =: L_{n,1} + L_{n,2} + L_{n,3},$$
(A.1)

where

$$\psi_2(x_1, x_2) := \int_{-\infty}^{\infty} \psi(x_1, x_2, x_3) dF(x_3) - \psi_1(x_1) - \psi_1(x_2) - \theta, \quad x_1, x_2 \in \mathbb{R},$$

$$\psi_3(x_1, x_2, x_3) := \psi(x_1, x_2, x_3) - \sum_{i=1}^3 \psi_1(x_i)$$
$$- \sum_{i=1}^2 \sum_{j=i+1}^3 \psi_2(x_i, x_j) - \theta, \quad x_1, x_2, x_3 \in \mathbb{R}.$$

Under (i), and since ψ_1 is measurable, $\{\psi_1(X_t)\}$ is a strictly stationary and uniformly bounded sequence of zero-mean random variables whose coefficients of absolute regularity are bounded by those of **X**. Consequently, $\tau < \infty$ and $L_{n,1} \rightarrow \mathcal{N}(0,9\tau)$ in distribution as $n \rightarrow \infty$, on account of Theorem 18.5.4 in Ibragimov and Linnik (1971, p. 347). Furthermore, noting that $\sup_{-\infty < t_1 < t_2 < t_3 < \infty} |\psi(X_{t_1}, X_{t_2}, X_{t_3})| < \infty$ almost surely, we have

$$\begin{split} \mathsf{E}(L_{n,2}^{2}) &= \\ &\frac{36}{n(n-1)^{2}} \sum_{t_{1}=1}^{n-1} \sum_{t_{2}=t_{1}+1}^{n} \sum_{t_{3}=1}^{n-1} \sum_{t_{4}=t_{3}+1}^{n} \mathsf{E}[\psi_{2}(X_{t_{1}}, X_{t_{2}})\psi_{2}(X_{t_{3}}, X_{t_{4}})] \\ &\leqslant \frac{36}{n^{3}} \sum_{t_{1}=1}^{n-1} \sum_{t_{2}=t_{1}+1}^{n} \sum_{t_{3}=1}^{n-1} \sum_{t_{4}=t_{3}+1}^{n} |\mathsf{E}[\psi_{2}(X_{t_{1}}, X_{t_{2}}) \\ &\psi_{2}(X_{t_{3}}, X_{t_{4}})]| \to 0 \quad \text{as } n \to \infty, \end{split}$$
(A.2)

by the bound given in Lemma 3 of Arcones (1995) and an argument similar to that used in the proof of his Theorem 1. An analogous argument leads to

$$\mathsf{E}(L^2_{n,3}) \to 0 \quad \text{as } n \to \infty.$$
 (A.3)

Therefore, by the Bienaymé–Chebyshev inequality, both $L_{n,2}$ and $L_{n,3}$ converge in probability to zero as $n \rightarrow \infty$, and the statement of the theorem follows by Slutsky's lemma.

The stated results under (ii) and (iii) follow as special cases of Theorem 2.3 of Fischer, Fried, and Wendler (2016) and Theorem 2.1 of Fischer (2017), respectively. ■

Proof of Theorem 2: Recalling the decomposition of S_n in (A.1) and noting that $\tau < \infty$ under the conditions of the theorem, we have

$$\mathsf{E}(L_{n,1}^2) = 9 \sum_{h=1-n}^{n-1} \left(1 - \frac{|h|}{n}\right) \mathsf{E}[\psi_1(X_0)\psi_1(X_h)] \to \sigma^2$$

as $n \to \infty$,

by Kronecker's lemma. Moreover, in view of Arcones (1995, lem. 3), Fischer, Fried, and Wendler (2016, lem. 4.3), and the fact that $\sum_{k=1}^{n} k\alpha(k)^{\gamma/(2\gamma+1)} \leq \sum_{k=1}^{n} k^{1-\eta\gamma/(2\gamma+1)} = \mathcal{O}(n^{\varrho})$ for some $\varrho \in$ (0, 1), the convergence results in (A.2) and (A.3) hold under conditions (i) and (ii) of Theorem 1. Therefore, as $n \to \infty$, $\mathbb{E}[(L_{n,2} + L_{n,3})^2] \to 0$ and $\mathbb{E}[L_{n,1}(L_{n,2} + L_{n,3})] \to 0$, by the C_r -inequality and the Cauchy-Bunyakovskii–Schwarz inequality, respectively, and thus $\mathbb{E}(S_n^2) \to \sigma^2$ as $n \to \infty$. Upon noting that the latter result, together with Theorem 1, ensures that the sequence $\{S_n^2, n \ge 3\}$ is uniformly integrable (e.g., Serfling 1980, lem. B, p. 15), the stated convergence of $H_{n,\ell}$ and $\hat{\sigma}_{n,\ell}^2$ follows from Tewes, Politis, and Nordman (2019, corol. 2). **Proof of Theorem 3:** Since, by Theorem 1 and the continuity of the standard normal distribution function Φ , $\sup_{x \in \mathbb{R}} |P(S_n \leq x) - \Phi(x/\sigma)| \rightarrow 0$ as $n \rightarrow \infty$, to establish consistency of $H_{n,\ell}$ for the distribution function of S_n it is enough to show that $\sup_{x \in \mathbb{R}} |H_{n,\ell}(x) - \Phi(x/\sigma)| \rightarrow 0$ in probability as $n \rightarrow \infty$. Hence, by the same argument as in the proof of Politis, Romano, and Wolf (1999, theor. 3.2.1, pp. 70–72), it suffices to verify that, for each fixed $x \in \mathbb{R}$, $\overline{U}_{n,\ell}(x) := (n - \ell + 1)^{-1} \sum_{i=1}^{n-\ell+1} U_{\ell,i}(x)$ converges in probability to $\Phi(x/\sigma)$ as $n \rightarrow \infty$. Because $E[\overline{U}_{n,\ell}(x)] = P(S_{\ell,1} \leq x)$ converges to $\Phi(x/\sigma)$ as $n \rightarrow \infty$, on account of Theorem 1 and the assumption on ℓ , it remains to show that $\operatorname{var}[\overline{U}_{n,\ell}(x)] \rightarrow 0$ as $n \rightarrow \infty$ for each $x \in \mathbb{R}$. To this end, observe that, by the strict stationarity of $\{U_{\ell,i}(x)\}$, viewed as a process indexed by i,

$$\begin{aligned} \operatorname{var}[\bar{U}_{n,\ell}(x)] &= \frac{1}{(n-\ell+1)^2} \sum_{h=\ell-n}^{n-\ell} (n-\ell+1-|h|) \\ &\operatorname{cov}[U_{\ell,1}(x), U_{\ell,1+|h|}(x)] \\ &\leqslant \frac{1}{(n-\ell+1)^2} \sum_{h=\ell-n}^{n-\ell} (n-\ell+1-|h|) \\ &\left|\operatorname{cov}[U_{\ell,1}(x), U_{\ell,1+|h|}(x)]\right| \\ &\leqslant \frac{2}{n-\ell+1} \sum_{h=0}^{n-\ell} \left|\operatorname{cov}[U_{\ell,1}(x), U_{\ell,1+h}(x)]\right|, \end{aligned}$$

where, by the assumption in Equation (5), the majorant side converges to zero as $n \to \infty$. Thus, $H_{n,\ell}(x) - \Phi(x/\sigma) \to 0$ in probability as $n \to \infty$, for each $x \in \mathbb{R}$, from which convergence in the uniform metric follows by a standard subsequence argument and the continuity of Φ .

To prove consistency of $\hat{\sigma}_{n,\ell}^2$ for σ^2 , note that

$$\sum_{k=0}^{n} k \tilde{\beta}(k) + \sum_{k=0}^{n} k \left(2 \sum_{m=k}^{\infty} \xi(m) \right)^{1/2} \leq C \sum_{k=1}^{n} k \left(k^{-\nu} + n^{-(\nu+1)/2} \right)$$
$$= \mathcal{O}(n^{\varrho}) + \mathcal{O}(n^{2-(\nu+1)/2}) = \mathcal{O}(n^{\varrho}),$$

for some C > 0 and $\varrho \ge 0$. Hence, using Fischer (2017, lem. A.2), it is easy to verify that the convergence results in Equations (A.2) and (A.3) hold under the conditions of the theorem. By the same argument as in the proof of Theorem 2, it then follows that the sequence $\{S_n^2, n \ge 3\}$ is uniformly integrable. This, together with the fact that $\sup_{x \in \mathbb{R}} |H_{n,\ell}(x) - \Phi(x/\sigma)| \to 0$ in probability as $n \to \infty$, ensures the stated convergence of $\hat{\sigma}_{n,\ell}^2$ via Theorem 3(iii) of Tewes, Politis, and Nordman (2019).

Proof of Corollary 1: By virtue of Theorem 1, Theorem 2(a), the continuity of Φ , and the continuous mapping theorem, we have that, as $n \to \infty$, $\sup_{x \in \mathbb{R}} |H_{n,\ell}(x) - \Phi(x/\sigma)| \to 0$ in probability and $\sup_{x \ge 0} |\bar{H}_{n,\ell}(x) - (2\Phi(x/\sigma) - 1)| \to 0$ in probability. Hence, as $n \to \infty$, $H_{n,\ell}^{-1}(\delta) \to \sigma \Phi^{-1}(\delta)$ in probability and $\bar{H}_{n,\ell}^{-1}(1-\delta) \to \sigma \Phi^{-1}(1-\delta/2)$ in probability, for any $\delta \in (0,1)$, from which the stated asymptotic coverage of $C_{n,\ell}^{(1)}(\delta)$ and $C_{n,\ell}^{(2)}(\delta)$ follows readily using Slutsky's lemma.

Results
Simulation
ä
ppendix
-

Table 4. Monte Carlo results under symmtery.

<u>ný ^ciňý</u> S2 S3 N S1 S2 S3
S1 S2 S3
23 23
C _{MV} S2 S
N S1
S3
51 S2
Z
52 53
S1 S
z
52 S3
S1 S
~
. –

Note: Entries are estimated probabilities (in percentage) that 95% confidence intervals for θ contain $\theta = 0$.

Table 5. Monte Carlo results under asymmtery.

				•																					
)	(1) CA			C C	(2) 24			C ^C	3) A			U C	≘≥			C _M	<u>د</u> ،			C, C	ω Þ	
u	DGP	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4	A1	A2	A3	A4
100	١M	35.2	31.8	67.2	73.2	31.2	23.2	66.6	73.8	33.6	27.2	68.0	73.6	50.8	45.5	76.8	82.2	38.0	28.2	72.1	78.3	39.3	31.8	73.1	79.0
	M2	63.0	33.6	95.2	95.4	55.6	29.8	95.8	95.0	57.2	30.8	95.8	95.2	70.8	43.0	96.6	98.0	62.8	34.8	94.8	96.6	63.1	34.0	94.4	97.2
	M3	54.0	35.4	88.2	92.2	48.2	27.8	88.6	93.4	49.6	31.0	89.2	94.2	63.2	46.9	93.9	96.0	53.0	35.4	90.7	94.8	54.3	36.8	90.5	94.3
	М4	69.69	32.8	94.4	91.8	59.8	26.2	90.6	89.8	61.6	26.0	91.8	90.0	79.3	44.9	96.7	96.7	70.7	35.4	93.2	93.7	69.4	33.6	93.6	93.5
	M5	89.0	48.2	99.8	9.66	89.8	42.6	99.8	100.0	90.6	45.0	99.8	100.0	94.7	60.6	9.66	99.7	92.7	55.4	99.8	99.8	93.2	55.1	100.0	99.9
	M6	50.0	26.6	90.06	91.8	50.4	26.6	91.8	94.8	50.8	27.8	91.6	95.2	61.6	41.4	94.9	95.3	57.9	34.1	94.8	95.9	57.7	34.2	94.6	95.0
200	Ш	57.6	47.2	93.8	92.4	54.8	40.6	93.6	93.4	53.6	40.0	93.0	92.8	63.8	52.4	92.2	95.0	55.4	42.4	93.1	95.7	57.0	42.9	92.4	95.4
	M2	87.4	53.4	100.0	100.0	89.8	51.4	100.0	100.0	89.0	52.4	100.0	100.0	92.2	65.4	100.0	100.0	90.6	57.5	100.0	100.0	89.6	56.7	100.0	100.0
	M3	76.4	56.6	0.06	99.4	74.6	50.6	0.06	100.0	75.8	49.6	98.8	100.0	78.5	63.5	99.8	100.0	75.9	55.0	99.7	100.0	76.9	54.2	99.8	100.0
	Μ4	94.0	53.6	99.8	9.66	91.8	49.6	100.0	9.66	91.8	49.8	100.0	9.66	95.2	62.8	100.0	9.99	93.4	55.5	100.0	99.9	93.6	53.6	100.0	99.7
	M5	99.0	69.4	99.8	100.0	99.2	70.0	99.8	100.0	99.2	70.4	100.0	100.0	9.99	81.6	100.0	100.0	99.9	79.7	100.0	100.0	9.9	79.9	100.0	100.0
	M6	74.4	45.4	0.06	9.66	76.2	46.6	99.4	100.0	75.8	46.6	99.4	100.0	84.4	56.0	99.7	99.7	82.7	52.5	99.8	99.9	81.9	51.2	9.99	99.7
Note:	Entries ä	are the e	stimated	probabilit	ies (in per	centage)	of exclus	ion of θ =	= 0 from	95% con	fidence ir	itervals.													

Acknowledgments

The authors are grateful to the associate editor and two referees for their helpful comments on an earlier version of this article.

References

- Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., and Weiss, B. (1996), "Strong Laws for L- and U-Statistics," Transactions of the American Mathematical Society, 348, 2845–2866. [3]
- Arcones, M. A. (1995), "On the Central Limit Theorem for U-Statistics Under Absolute Regularity," Statistics and Probability Letters, 24, 245– 249. [11]
- Bai, J., and Ng, S. (2005), "Tests for Skewness, Kurtosis, and Normality for Time Series Data," *Journal of Business and Economic Statistics*, 23, 49–60. [2,6]
- Beran, R. (1978), "An Efficient and Robust Adaptive Estimator of Location," Annals of Statistics, 6, 292–313. [1]
- Berg, A., McMurry, T. L., and Politis, D. N. (2010), "Subsampling p-Values," Statistics and Probability Letters, 80, 1358–1364. [9]
- Borovkova, S., Burton, R., and Dehling, H. (2001), "Limit Theorems for Functionals of Mixing Processes With Applications to U-Statistics and Dimension Estimation," *Transactions of the American Mathematical Society*, 353, 4261–4318. [3,5]
- Bosq, D. (1996), Nonparametric Statistics for Stochastic Processes, New York: Springer-Verlag. [7]
- Carlstein, E. (1986), "The Use of Subseries Methods for Estimating the Variance of a General Statistic From a Stationary Time Series," *Annals of Statistics*, 14, 1171–1179. [6]
- Chabi-Yo, F. (2012), "Pricing Kernels With Stochastic Skewness and Volatility Risk," *Management Science*, 58, 624–640. [2]
- Chan, K. S., Petruccelli, J. D., Tong, H., and Woolford, S. W. (1985), "A Multiple-Threshold AR(1) Model," *Journal of Applied Probability*, 22, 267–279. [8]
- Chen, Y.-T., Chou, R. Y., and Kuan, C.-M. (2000), "Testing Time Reversibility Without Moment Restrictions," *Journal of Econometrics*, 95, 199–218. [1]
- Chunhachinda, P., Dandapani, K., Hamid, S., and Prakash, A. J. (1997), "Portfolio Selection and Skewness: Evidence From International Stock Markets," *Journal of Banking & Finance*, 21, 143–167. [1]
- Conine, T. E., and Tamarkin, M. J. (1981), "On Diversification Given Asymmetry in Returns," *Journal of Finance*, 36, 1143–1155. [1]
- Cont, R. (2001), "Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues," *Quantitative Finance*, 1, 223–236. [10]
- Davidson, J. (1994), Stochastic Limit Theory, Oxford: Oxford University Press. [7]
- (2002), "Establishing Conditions for the Functional Central Limit Theorem in Nonlinear and Semiparametric Time Series Processes," *Journal of Econometrics*, 106, 243–269. [3,8]
- Davis, C. E., and Quade, D. (1978), "U-Statistics for Skewness or Symmetry," Communications in Statistics Theory and Methods, 7, 413–418. [2,3,6]
- Dehling, H., Vogel, D., Wendler, M., and Wied, D. (2017), "Testing for Changes in Kendall's Tau," *Econometric Theory*, 33, 1352–1386. [5]
- DeLong, J. B., and Summers, L. H. (1986), "Are Business Cycles Symmetrical?" in R. J. Gordon (Ed.), *The American Business Cycle: Continuity and Change*, Chicago: The University of Chicago Press, pp. 166–179. [2,9]
- Doukhan, P. (1994), Mixing: Properties and Examples, New York: Springer-Verlag. [3,8]
- Eubank, R. L., Iariccia, V. N., and Rosenstein, R. B. (1992), "Testing Symmetry About an Unknown Median, Via Linear Rank Procedures," *Journal of Nonparametric Statistics*, 1, 301–311. [2]
- Fischer, A. (2017), "Generalized Linear Statistics for Near Epoch Dependent Processes With Application to EGARCH-Processes," Institute of Hydrology, Ruhr-Universität Bochum (arXiv: 1705.04545 [math.ST]). [5,11]
- Fischer, S., Fried, R., and Wendler, M. (2016), "Multivariate Generalized Linear-Statistics of Short Range Dependent Data," *Electronic Journal of Statistics*, 10, 646–682. [4,11]

- Francq, C., and Zakoïan, J.-M. (2006), "Mixing Properties of a General Class of GARCH(1,1) Models Without Moment Assumptions on the Observed Process," *Econometric Theory*, 22, 815–834. [8]
- Franses, P. H., and van Dijk, D. (2000), Non-Linear Time Series Models in Empirical Finance, Cambridge: Cambridge University Press. [10]
- Fukuchi, J.-I. (1999), "Subsampling and Model Selection in Time Series," *Biometrika*, 86, 591–604. [4]
- Giacomini, R., Politis, D. N., and White, H. (2013), "A Warp-Speed Method for Conducting Monte Carlo Experiments Involving Bootstrap Estimators," *Econometric Theory*, 29, 567–589. [7]
- Hall, P. (1988), "On Symmetric Bootstrap Confidence Intervals," *Journal of the Royal Statistical Society*, Series B, 50, 35–45. [5]
- Han, F. (2018), "An Exponential Inequality for U-Statistics Under Mixing Conditions," *Journal of Theoretical Probability*, 31, 556–578. [3]
- Hwang, E., and Shin, D. W. (2015), "Stationary Bootstrap for U-Statistics Under Strong Mixing," Communications for Statistical Applications and Methods, 22, 81–93. [6]
- Ibragimov, I. A. (1962), "Some Limit Theorems for Stationary Processes," Theory of Probability and Its Applications, 7, 349–382. [3]
- Ibragimov, I. A., and Linnik, Y. V. (1971), Independent and Stationary Sequences of Random Variables, Groningen: Wolters-Noordhoff. [11]
- Ingersoll, J. E. (1987), *Theory of Financial Decision Making*, Lanham, Maryland: Rowman and Littlefield Publishers. [2]
- Jing, B.-Y. (1995), "Some Resampling Procedures Under Symmetry," Australian Journal of Statistics, 37, 337–344. [1]
- Jurczenko, E., Maillet, B., and Negrea, B. (2004), "A Note on Skewness and Kurtosis Adjusted Option Pricing Models Under the Martingale Restriction," *Quantitative Finance*, 45, 479–488. [2]
- Kochar, S. C. (1992), "On the 'Triples Test' for Symmetry," Statistics and Probability Letters, 14, 311–312. [6]
- Koul, H. L., and Schick, A. (1997), "Efficient Estimation in Nonlinear Autoregressive Time-Series Models," *Bernoulli*, 3, 247–277. [1]
- Lahiri, S. N. (2003), Resampling Methods for Dependent Data, New York: Springer-Verlag. [6]
- Lehmann, E. L., and Romano, J. P. (2005), *Testing Statistical Hypotheses* (3rd ed.), New York: Springer. [1]
- Leucht, A. (2012), "Characteristic Function-Based Hypothesis Tests Under Weak Dependence," *Journal of Multivariate Analysis*, 108, 67–89. [2]
- Lyubchich, V., Wang, X., Heyes, A., and Gel, Y. R. (2016), "A Distribution-Free *m*-out-of-*n* Bootstrap Approach to Testing Symmetry About an Unknown Median," *Computational Statistics and Data Analysis*, 104, 1– 9. [6]
- Maasoumi, E., and Racine, J. S. (2009), "A Robust Entropy-Based Test of Asymmetry for Discrete and Continuous Processes," *Econometric Reviews*, 28, 246–261. [2]
- Maronna, R. A., Martin, R. D., Yohai, V. J., and Salibián-Barrera, M. (2019), *Robust Statistics: Theory and Methods (with R)* (2nd ed.), Hoboken, NJ: Wiley. [1]
- Martins, C. M. (1999), "A Note on the Third-Order Moment Structure of a Bilinear Model With Non-Independent Shocks," *Portugaliae Mathematica*, 56, 115–125. [8]
- McKay, A., and Reis, R. (2008), "The Brevity and Violence of Contractions and Expansions," *Journal of Monetary Economics* 55, 738–751. [2]
- Mitton, T., and Vorkink, K. (2007), "Equilibrium Underdiversification and the Preference for Skewness," *Review of Financial Studies*, 20, 1255–1288. [1]
- Mokkadem, A. (1988), "Mixing Properties of ARMA Processes," *Stochastic Processes and Their Applications*, *29*, 309–315. [8]
- Monahan, J. F. (1984), "An Improved Algorithm for the Triples Test," Communications in Statistics – Simulation and Computation, 13, 545– 553. [7]
- Muler, N., Peña, D., and Yohai, V. J. (2009), "Robust Estimation for ARMA Models," Annals of Statistics, 37, 816–840. [1]
- Narayan, P. K., and S. Popp (2009), "Investigating Business Cycle Asymmetry for the G7 Countries: Evidence From over a Century of Data," *International Review of Economics & Finance*, 18, 583–591. [9]
- Nieuwerburgha, S. V., and Veldkamp, L. (2006), "Learning Asymmetries in Real Business Cycles," *Journal of Monetary Economics*, 53, 753–772. [2]
- Peiró, A. (1999), "Skewness in Financial Returns," Journal of Banking & Finance, 23, 847–862. [10]

Pemberton, J., and Tong, H. (1981), "A Note on the Distributions of Non-Linear Autoregressive Stochastic Models," *Journal of Time Series Analysis*, 2, 49–52. [1,8]

- Politis, D. N., and Romano, J. P. (1994a), "Large Sample Confidence Regions Based on Subsamples Under Minimal Assumptions," *Annals* of Statistics, 22, 2031–2050. [2]
- (1994b), "The Stationary Bootstrap," *Journal of the American Statistical Association*, 89, 1303–1313. [6]
- Politis, D. N., Romano, J. P., and Wolf, M. (1999), *Subsampling*, New York: Springer-Verlag. [2,5,6,7,11]
- (2001), "On the Asymptotic Theory of Subsampling," *Statistica Sinica*, 11, 1105–1124. [7]
- Psaradakis, Z. (2003), "A Bootstrap Test for Symmetry of Dependent Data Based on a Kolmogorov–Smirnov Type Statistic," *Communications in Statistics – Simulation and Computation*, 32, 113–126. [2]
- (2008), "Assessing Time-Reversibility Under Minimal Assumptions," *Journal of Time Series Analysis*, 29, 881–905. [1]
- (2016), "Using the Bootstrap to Test for Symmetry Under Unknown Dependence," *Journal of Business and Economic Statistics*, 34, 406–415. [2,6,9]
- Psaradakis, Z., and M. Vávra (2015), "A Quantile-Based Test for Symmetry of Weakly Dependent Processes," *Journal of Time Series Analysis*, 36, 587–598. [2]
- (2019), "Bootstrap-Assisted Tests of Symmetry for Dependent Data," *Journal of Statistical Computation and Simulation*, 89, 1203–1226. [2,7]
- Ramsey, J. B., and Rothman, P. (1996), "Time Irreversibility and Business Cycle Asymmetry," *Journal of Money, Credit and Banking*, 28, 1–21. [9]

- Randles, R. H., Fligner, M. A., Policello, G. E., and Wolfe, D. A. (1980), "An Asymptotically Distribution-Free Test for Symmetry Versus Asymmetry," *Journal of the American Statistical Association*, 75, 168–172. [2,3,6,8]
- Razzak, W. A. (2001), "Business Cycle Asymmetries: International Evidence," *Review of Economic Dynamics*, 4, 230–243. [9,10]
- Romano, J. P., and Wolf, M. (2001), "Subsampling Intervals in Autoregressive Models With Linear Time Trends," *Econometrica*, 69, 1283–1314. [7,8]
- Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, New York: Wiley. [10,11]
- Sichel, D. E. (1993), "Business Cycle Asymmetry: A Deeper Look," Economic Inquiry 31, 224–236. [2,9]
- Tewes, J., Politis, D. N., and Nordman, D. J. (2019), "Convolved Subsampling Estimation With Applications to Block Bootstrap," Annals of Statistics, 47, 468–496. [11]
- Vančček, P. (2006), "Rate of Convergence for a Class of RCA Estimators," *Kybernetika*, 42, 699–709. [7]
- Verbrugge, R. (1997), "Investigating Cyclical Asymmetries," Studies in Nonlinear Dynamics and Econometrics, 2, 15–22. [9,10]
- Wendler, M. (2011), "Bahadur Representation for U-Quantiles of Dependent Data," Journal of Multivariate Analysis, 102, 1064–1079. [5]
- Zhilova, M. (2020), "New Edgeworth-Type Expansions With Finite Sample Guarantees," Atlanta, GA: School of Mathematics, Georgia Institute of Technology, (arXiv: 2006.03959v3 [math.ST]). [1]
- Zuo, Y. and R. Serfling (2000), "On the Performance of Some Robust Nonparametric Location Measures Relative to a General Notion of Multivariate Symmetry," *Journal of Statistical Planning and Inference*, 84, 55–79. [6]