Testing for normality of weakly dependent data

Zacharias Psaradakis

Department of Economics, Mathematics and Statistics Birkbeck, University of London **Marián Vávra** Advisor to the Governor and Research Department National Bank of Slovakia E-mail: marian.vavra@nbs.sk

NBS Research Seminar, Bratislava, Slovakia, 2014

The validity of normality of the marginal law (of economic variables) may be very useful in practice:

Econometrics:

- econometric modelling/identification;
- forecasting (testing for Gaussian prediction bands)
- bootstrap techniques;
- statistical filters.

Macro-Finance:

- option pricing;
- risk management;
- yield curve modelling (testing for Gaussian affine term structure models).

Some basics about normality tests

There are 3 classes of (i.i.d. based) tests in the literature:

- Empirical distribution (characteristic) function tests (e.g. Kolmogorov-Smirnov test, Anderson-Darling test);
- Order statistic based tests (e.g. Shapiro-Wilks test);
- Moment based tests (e.g. Jarque-Bera test).

Bai and Ng (2005) modified a JB test for weakly dependent observations (the only test for w.d.). But the test suffers from some shortcomings

- The finite-sample properties of the test are very poor;
- The test requires the first eight moments to be finite.

The main task of the paper

The main task is to propose a new version of some existing test for normality of weakly dependent data under minimal (moment) conditions.

The Anderson-Darling (AD) test is one of the most power test of normality in the literature. The AD test takes the form

$$\mathcal{A}_n = \int_{\mathbb{R}} \frac{(F_n(z) - \Phi(z))^2}{\Phi(z)(1 - \Phi(z))} \,\mathrm{d}\Phi(z), \quad z \in \mathbb{R}, \tag{1}$$

where Φ denotes a standard normal distribution and F_n is the empirical distribution function associated with $\{X_t : t = 1, ..., n\}$

$$F_n(z) = \frac{1}{n} \sum_{t=1}^n I\left(\frac{X_t - \mu}{\sigma} \le z\right), \quad z \in \mathbb{R},$$
(2)

where $I(\cdot)$ is a standard indicator function and $\mu = \mathbb{E}(X_t)$ and $\sigma = \sqrt{\operatorname{var}(X_t)}$. It can be shown that as $n \to \infty$ and for given μ and σ , then

$$n\mathcal{A}_n \xrightarrow{d} \int_0^1 \frac{U^2(\omega)}{\omega(1-\omega)} \,\mathrm{d}\omega,$$
 (3)

where U is the Brownian bridge.

We face 2 complications when using the AD test in practice:

- Complication 1: once the parameter(s) μ and/or σ in (2) are unknown and must be estimated from data. The asymptotic distribution is no longer parameter free ((3) does not hold);
- Complication 2: economic time series (at least some of them) can be characterized as weakly dependent process and the asymptotic distribution is no longer parameter free;
- An appropriate bootstrap method has to be used in order to (i) replicate the dependence in data; (ii) impose the normality assumption under H₀.
- We implement an AR-sieve bootstrap to calculate the critical values of the AD test.

Assumption 1 The underlying stochastic process $\{X_t\}$ is a real-valued stationary and weakly dependent process allowing for a Wold representation given by

$$X_t = \mu + \sum_{j=1}^{\infty} \psi_j \epsilon_{t-j} + \epsilon_t, \quad t \in \mathbb{Z},$$
(4)

where $\mu \in \mathbb{R}$, the roots of the lag polynomial $\psi(q) = 1 - \sum_{j=1}^{\infty} \psi_j q^j$ lie outside the unit disk and $\sum_{j=1}^{\infty} j |\psi_j| < \infty$, the error sequence $\{\epsilon_t\}$ is assumed to be stationary and ergodic such that $\mathbb{E}(\epsilon_t | \mathcal{F}_{t-1}) = 0$, $\mathbb{E}(\epsilon_t^2 | \mathcal{F}_{t-1}) = s^2 < \infty$, where $\mathcal{F}_t = \{\epsilon_t, \epsilon_{t-1}, \ldots\}$ is the σ -field, $\mathbb{E}(\epsilon_t^4) < \infty$ and the density function $f(\epsilon_t)$ is absolutely continuous.

Note

Under an additional mild assumption the process in (4) can be written into an $AR(\infty)$ model.

AR-sieve bootstrap

Algorithm 1

- (i) Select an appropriate lag order p of an AR model using the AIC.
- (ii) Estimate the unknown AR(p) model parameters by the OLS.
- (iii) Construct a sequence of the estimated residuals $\{\hat{\epsilon}_t : t = p + 1, \dots, n\}$ by the recursion

$$\hat{\epsilon}_t = X_t - \hat{c} - \sum_{i=1}^p \hat{\phi}_i X_{t-i}.$$

(iv) Under the null hypothesis of marginal normality, the hypothesized distribution equals to a standard normal distribution Φ . Therefore, consistently with the null, draw independent random errors $\epsilon_t^* \sim N(0, \hat{s}^2)$, for t = 1, ..., n + 100, where $\hat{s}^2 = (n - 2p - 1)^{-1} \sum_{t=p+1}^n \hat{\epsilon}_t^2$.

AR-sieve bootstrap

Algorithm 1

(v) Generate bootstrap replicates $\{X_t^* : t = 1, \dots, n+100\}$ by the recursion

$$X_t^* = \hat{c} + \sum_{i=1}^p \hat{\phi}_i X_{t-i}^* + \epsilon_t^*,$$

where the process is initiated by a vector of sample averages: $(X_{-p+1}^*, \ldots, X_0^*) = (\bar{X}, \ldots, \bar{X})$. The first 100 data points are then discarded in order to eliminate start-up effects and the remaining *n* data points are used.

(vi) Construct a bootstrap analogy of the BAD test \mathcal{A}_n^* calculated from a bootstrap sample $\{X_t^* : t = 1, ..., n\}$.

AR-sieve bootstrap

Algorithm 1

(vii) Repeat steps (iv)–(vi) independently *B* times to get a sample of the BAD statistics $\{\mathcal{A}_{n,i}^*: i = 1, ..., B\}$. Then, the sampling distributions of the BAD test statistic is approximated by the empirical distribution functions associated with $\{\mathcal{A}_{n,i}^*: i = 1, ..., B\}$: $H_n^*(u) = B^{-1} \sum_{i=1}^B I(\mathcal{A}_{n,i}^* \leq u)$. Finally, a bootstrap test of the nominal level α rejects the null hypothesis of normality if

$$\hat{\mathcal{A}}_n > \inf\{u : H_n^*(u) \ge (1-\alpha)\},\$$

where $\hat{\mathcal{A}}_n$ is the BAD test statistic obtained from the observed sample $\{X_t : t = 1, ..., n\}$.

Multivariate extension

- Since the estimation of the multivariate EDF-based tests is computationally expensive, some dimensionality reduction technique is desirable for multiple time series applications;
- A natural solution utilizes the fact that if a $(k \times 1)$ random vector \mathbf{x}_t is distributed as $N(\mu, \Sigma)$ under H_0 , then $y_t = (\mathbf{x}_t \mu)' \Sigma^{-1} (\mathbf{x}_t \mu)$ is distributed as $\chi^2(k)$;
- Requires the VAR-sieve bootstrap = not very convenient in our case;
- We introduce a simple, linear, yet flexible, dimensionality reduction method which is in spirit similar to the quadratic-form one. The method is motivated by the well-known Cramér-Wold theorem.

Theorem (Cramér-Wold)

For a $(k \times 1)$ random vectors $\mathbf{x}_t = (X_{1t}, \ldots, X_{kt})'$ and $\mathbf{x} = (X_1, \ldots, X_k)'$, a necessary and sufficient condition for $\mathbf{x}_t \xrightarrow{d} \mathbf{x}$ with a joint distribution $F(\mathbf{x})$ as $t \to \infty$ is that $\lambda' \mathbf{x}_t \xrightarrow{d} \lambda' \mathbf{x}$ with a marginal distribution function $F(\lambda' \mathbf{x})$ for each $\lambda \in \mathbf{R}^k$.

An ultimate question is, however, how to determine the aggregation vector λ .

We propose a two-step procedure (orthogonalization and aggregation):

- Step 1: The orthogonalization can be done by the eigenvalue decomposition which decomposes a (k × k) symmetric and positive-definite variance-covariance matrix as follows: cov(x_t) = Σ = PP', where P is a square matrix;
- Step 2: Orthogonalized components

 z_t = P⁻¹x_t = (Z_{1t},..., Z_{kt})' are then aggregated using the
 skewness-based weighting function defined as w = [w_i], where
 w_i = 1 if skew(Z_{it}) ≥ 0 and w_i = −1 if skew(Z_{it}) < 0, for
 i ∈ {1,...,k}, and skew(·) can by any measure of skewness;
 </p>
- Finally, one can then apply the testing procedure described in Algorithm 1 to the transformed scalar process $X_t = \lambda' x_t$, where $\lambda = w' P^{-1}$.

The finite-sample properties of the BN and BAD tests are assessed using the following DGPs:

M1:
$$X_t = 0.5X_{t-1} + \varepsilon_t$$

M2: $X_t = 0.8X_{t-1} + \varepsilon_t$
M3: $X_t = 0.8X_{t-1} - 0.4X_{t-2} - 0.5\varepsilon_{t-1} + \varepsilon_t$
M4: $X_t = 0.5X_{t-1} - 0.3X_{t-1}\epsilon_{t-1} + \epsilon_t$
M5: $X_t = 1.5S_t - 0.5(1 - S_t) + 0.5X_{t-1} + \epsilon_t$
M6:
(0.4 0.3) (at)

$$\mathbf{x}_t = \begin{pmatrix} 0.4 & 0.3 \\ 0.3 & 0.4 \end{pmatrix} \mathbf{x}_{t-1} + \begin{pmatrix} \mathbf{a}_t \\ \varepsilon_t \end{pmatrix}$$

where $a \sim N(0, 1)$ and $\varepsilon \in \{N(0, 1), S1, S2, S3, A1, A2, A3\}.$

Table : Parameters of Generalized Lambda Distribution

	λ_1	λ_2	λ_3	λ_4	skewness	kurtosis
S1	0.000000	-1.000000	-0.080000	-0.080000	0.0	6.0
S2	0.000000	-0.397912	-0.160000	-0.160000	0.0	11.6
S3	0.000000	-1.000000	-0.240000	-0.240000	0.0	126.0
A1	0.000000	-1.000000	-0.007500	-0.030000	1.5	7.5
A2	0.000000	-1.000000	-0.100900	-0.180200	2.0	21.1
A3	0.000000	-1.000000	-0.001000	-0.130000	3.2	23.8

Monte Carlo results

		<i>n</i> = 100		<i>n</i> = 200		<i>n</i> = 500	
DGP	distr.	BN	BAD	BN	BAD	BN	BAD
M1	Ν	0.03	0.05	0.05	0.05	0.09	0.04
	S1	0.01	0.23	0.04	0.40	0.22	0.78
	S2	0.04	0.44	0.09	0.69	0.34	0.97
	S 3	0.04	0.63	0.11	0.88	0.33	1.00
	A1	0.21	0.81	0.83	0.97	1.00	1.00
	A2	0.10	0.67	0.35	0.89	0.79	1.00
	A3	0.45	1.00	0.97	1.00	1.00	1.00
M2	Ν	0.01	0.06	0.02	0.06	0.04	0.05
	S1	0.00	0.11	0.00	0.14	0.02	0.17
	S2	0.01	0.19	0.02	0.24	0.06	0.37
	S 3	0.01	0.28	0.03	0.39	0.09	0.65
	A1	0.00	0.25	0.03	0.43	0.46	0.80
	A2	0.01	0.32	0.06	0.44	0.36	0.77
	A3	0.00	0.59	0.03	0.88	0.73	1.00

- The formal proof is given in Bühlmann (1997), some modifications are, however, necessary,
- An intuitive explanation: Bickel and Bühlmann (1997) explain that the closure of the Wold representation is fairly large. It means that for any non-linear stochastic process there exist another process in the closer of linear processes having identical sample paths with probability exceeding $1/e \approx 0.37$;
- A rule of thumb for applications: Kreiss et al. (2011) prove that if the distribution of a relevant statistic is determined solely by the first two moments, then the AR-sieve bootstrap is expected to work.

Example: symmetric or asymmetric fan-charts?

- Prediction bands (fan-charts) have become a standard tool of central banks in assessing risk about the future development of the economy (see Clements and Hendry (2008, Chap. 2,3));
- But we hold the view that only correct prediction bands may be useful in practice;
- Researches face an ultimate dilemma whether to construct symmetric or asymmetric fan-charts (symmetric = Bank of Canada, Riksbank, Norges Bank; asymmetric = Bank of England, NBS, National Bank of Poland, Bank of Italy);
- Other applications of the BAD test: calculating the probability of deflation; density forecast evaluation (DSGE vs. (B)VAR models).

Example: NBS inflation forecast errors

- The forecast error is defined as X_t(h) = π_{t+h} π_t(h) for a forecast horizon h ∈ {1,...,12}, where π_t(h) stands for the h-step ahead forecast of the (year-on-year) CPI inflation rate and π_{t+h} denotes the actual inflation rate.
- We focus on testing for marginal and joint normality of the NBS inflation forecast errors:
 - marginal hypothesis: $H_0: F(X_t(h)) = N(0, \sigma_h^2)$ against $H_1: F(X_t(h)) \neq N(0, \sigma_h^2);$
 - joint hypothesis: $H_0: F(X_t(1), \dots, X_t(12)) = N(\mathbf{0}, \mathbf{\Sigma})$ against $H_1: F(X_t(1), \dots, X_t(12)) \neq N(\mathbf{0}, \mathbf{\Sigma}).$

Example: symmetric or asymmetric fan-charts?

Table : *P*-values of the BAD Test for Marginal and Joint Normality of the Inflation Forecast Errors

hypothesis	horizon	<i>B</i> = 1000	<i>B</i> = 5000	B = 10000
marginal	h = 1	0.04	0.04	0.04
	h = 2	0.36	0.35	0.35
	h = 3	0.24	0.24	0.24
	h = 4	0.40	0.41	0.40
	h = 5	0.49	0.50	0.50
	h = 6	0.63	0.61	0.63
	h = 7	0.91	0.89	0.87
	h = 8	0.84	0.86	0.86
	h = 9	0.87	0.86	0.87
	h = 10	0.73	0.74	0.73
	h = 11	0.57	0.59	0.57
	h = 12	0.56	0.59	0.58
joint	$h=1,\ldots,12$	0.65	0.62	0.62

- Bickel, P. and P. Bühlmann (1997). Closure of linear processes. Journal of Theoretical Probability 10, 445–479.
- Bühlmann, P. (1997). Sieve bootstrap for time series. *Bernoulli 3*, 123–148.
- Clements, M. and D. Hendry (2008). A Companion to Economic Forecasting. Wiley.
- Kreiss, J., E. Paparoditis, and D. Politis (2011). On the range of validity of the autoregressive sieve bootstrap. *The Annals of Statistics 39*, 2103–2130.

Thanks

Thank you for attention.