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Introduction

The validity of normality of the marginal law (of economic variables)
may be very useful in practice:

Econometrics:

econometric modelling/identification;
forecasting (testing for Gaussian prediction bands)
bootstrap techniques;
statistical filters.

Macro-Finance:

option pricing;
risk management;
yield curve modelling (testing for Gaussian affine term structure
models).



Some basics about normality tests

There are 3 classes of (i.i.d. based) tests in the literature:

Empirical distribution (characteristic) function tests (e.g.
Kolmogorov-Smirnov test, Anderson-Darling test);

Order statistic based tests (e.g. Shapiro-Wilks test);

Moment based tests (e.g. Jarque-Bera test).

Bai and Ng (2005) modified a JB test for weakly dependent
observations (the only test for w.d.). But the test suffers from some
shortcomings

The finite-sample properties of the test are very poor;

The test requires the first eight moments to be finite.

The main task of the paper

The main task is to propose a new version of some existing test for
normality of weakly dependent data under minimal (moment)
conditions.



Which test to modify?

The Anderson-Darling (AD) test is one of the most power test of
normality in the literature. The AD test takes the form

An =

∫
R

(Fn(z)− Φ(z))2

Φ(z)(1− Φ(z))
dΦ(z), z ∈ R, (1)

where Φ denotes a standard normal distribution and Fn is the
empirical distribution function associated with {Xt : t = 1, . . . , n}

Fn(z) =
1

n

n∑
t=1

I

(
Xt − µ
σ

≤ z

)
, z ∈ R, (2)

where I (·) is a standard indicator function and µ = E(Xt) and
σ =

√
var(Xt). It can be shown that as n→∞ and for given µ and

σ, then

nAn
d−→
∫ 1

0

U2(ω)

ω(1− ω)
dω, (3)

where U is the Brownian bridge.



Complications with the AD test statistic

We face 2 complications when using the AD test in practice:

Complication 1: once the parameter(s) µ and/or σ in (2) are
unknown and must be estimated from data. The asymptotic
distribution is no longer parameter free ((3) does not hold);

Complication 2: economic time series (at least some of them)
can be characterized as weakly dependent process and the
asymptotic distribution is no longer parameter free;

An appropriate bootstrap method has to be used in order to (i)
replicate the dependence in data; (ii) impose the normality
assumption under H0.

We implement an AR-sieve bootstrap to calculate the critical
values of the AD test.



Assumptions about the stochastic process

Assumption 1 The underlying stochastic process {Xt} is a
real-valued stationary and weakly dependent process allowing for a
Wold representation given by

Xt = µ+
∞∑
j=1

ψjεt−j + εt , t ∈ Z, (4)

where µ ∈ R, the roots of the lag polynomial ψ(q) = 1−
∑∞

j=1 ψjq
j

lie outside the unit disk and
∑∞

j=1 j |ψj | <∞, the error sequence {εt}
is assumed to be stationary and ergodic such that E(εt |Ft−1) = 0,
E(ε2t |Ft−1) = s2 <∞, where Ft = {εt , εt−1, . . .} is the σ-field,
E(ε4t ) <∞ and the density function f (εt) is absolutely continuous.

Note

Under an additional mild assumption the process in (4) can be written
into an AR(∞) model.



AR-sieve bootstrap

Algorithm 1

(i) Select an appropriate lag order p of an AR model using the AIC.

(ii) Estimate the unknown AR(p) model parameters by the OLS.

(iii) Construct a sequence of the estimated residuals
{ε̂t : t = p + 1, . . . , n} by the recursion

ε̂t = Xt − ĉ −
p∑

i=1

φ̂iXt−i .

(iv) Under the null hypothesis of marginal normality, the hypothesized
distribution equals to a standard normal distribution Φ.
Therefore, consistently with the null, draw independent random
errors ε∗t ∼ N(0, ŝ2), for t = 1, . . . , n + 100, where
ŝ2 = (n − 2p − 1)−1

∑n
t=p+1 ε̂

2
t .



AR-sieve bootstrap

Algorithm 1

(v) Generate bootstrap replicates {X ∗t : t = 1, . . . , n + 100} by the
recursion

X ∗t = ĉ +

p∑
i=1

φ̂iX
∗
t−i + ε∗t ,

where the process is initiated by a vector of sample averages:
(X ∗−p+1, . . . ,X

∗
0 ) = (X̄ , . . . , X̄ ). The first 100 data points are

then discarded in order to eliminate start-up effects and the
remaining n data points are used.

(vi) Construct a bootstrap analogy of the BAD test A∗n calculated
from a bootstrap sample {X ∗t : t = 1, . . . , n}.



AR-sieve bootstrap

Algorithm 1

(vii) Repeat steps (iv)–(vi) independently B times to get a sample of
the BAD statistics {A∗n,i : i = 1, . . . ,B}. Then, the sampling
distributions of the BAD test statistic is approximated by the
empirical distribution functions associated with
{A∗n,i : i = 1, . . . ,B}: H∗n(u) = B−1

∑B
i=1 I (A∗n,i ≤ u). Finally, a

bootstrap test of the nominal level α rejects the null hypothesis
of normality if

Ân > inf{u : H∗n(u) ≥ (1− α)},

where Ân is the BAD test statistic obtained from the observed
sample {Xt : t = 1, . . . , n}.



Multivariate extension

Since the estimation of the multivariate EDF-based tests is
computationally expensive, some dimensionality reduction
technique is desirable for multiple time series applications;

A natural solution utilizes the fact that if a (k × 1) random
vector x t is distributed as N(µ,Σ) under H0, then
yt = (x t − µ)′Σ−1(x t − µ) is distributed as χ2(k);

Requires the VAR-sieve bootstrap = not very convenient in our
case;

We introduce a simple, linear, yet flexible, dimensionality
reduction method which is in spirit similar to the quadratic-form
one. The method is motivated by the well-known Cramér-Wold
theorem.



Multivariate extension...

Theorem (Cramér-Wold)

For a (k × 1) random vectors x t = (X1t , . . . ,Xkt)
′ and

x = (X1, . . . ,Xk)′, a necessary and sufficient condition for x t
d−→ x

with a joint distribution F (x) as t →∞ is that λ′x t
d−→ λ′x with a

marginal distribution function F (λ′x) for each λ ∈ Rk .

An ultimate question is, however, how to determine the aggregation
vector λ.



Multivariate extension...

We propose a two-step procedure (orthogonalization and
aggregation):

Step 1: The orthogonalization can be done by the eigenvalue
decomposition which decomposes a (k × k) symmetric and
positive-definite variance-covariance matrix as follows:
cov(x t) = Σ = PP ′, where P is a square matrix;

Step 2: Orthogonalized components
z t = P−1x t = (Z1t , . . . ,Zkt)

′ are then aggregated using the
skewness-based weighting function defined as w = [wi ], where
wi = 1 if skew(Zit) ≥ 0 and wi = −1 if skew(Zit) < 0, for
i ∈ {1, . . . , k}, and skew(·) can by any measure of skewness;

Finally, one can then apply the testing procedure described in
Algorithm 1 to the transformed scalar process Xt = λ′x t , where
λ = w ′P−1.



Monte Carlo setup

The finite-sample properties of the BN and BAD tests are assessed
using the following DGPs:

M1: Xt = 0.5Xt−1 + εt

M2: Xt = 0.8Xt−1 + εt

M3: Xt = 0.8Xt−1 − 0.4Xt−2 − 0.5εt−1 + εt

M4: Xt = 0.5Xt−1 − 0.3Xt−1εt−1 + εt

M5: Xt = 1.5St − 0.5(1− St) + 0.5Xt−1 + εt

M6:

x t =

(
0.4 0.3
0.3 0.4

)
x t−1 +

(
at
εt

)
where a ∼ N(0, 1) and ε ∈ {N(0, 1),S1,S2,S3,A1,A2,A3}.



Monte Carlo setup...

Table : Parameters of Generalized Lambda Distribution

λ1 λ2 λ3 λ4 skewness kurtosis

S1 0.000000 -1.000000 -0.080000 -0.080000 0.0 6.0
S2 0.000000 -0.397912 -0.160000 -0.160000 0.0 11.6
S3 0.000000 -1.000000 -0.240000 -0.240000 0.0 126.0
A1 0.000000 -1.000000 -0.007500 -0.030000 1.5 7.5
A2 0.000000 -1.000000 -0.100900 -0.180200 2.0 21.1
A3 0.000000 -1.000000 -0.001000 -0.130000 3.2 23.8



Monte Carlo results

n = 100 n = 200 n = 500
DGP distr. BN BAD BN BAD BN BAD

M1 N 0.03 0.05 0.05 0.05 0.09 0.04
S1 0.01 0.23 0.04 0.40 0.22 0.78
S2 0.04 0.44 0.09 0.69 0.34 0.97
S3 0.04 0.63 0.11 0.88 0.33 1.00
A1 0.21 0.81 0.83 0.97 1.00 1.00
A2 0.10 0.67 0.35 0.89 0.79 1.00
A3 0.45 1.00 0.97 1.00 1.00 1.00

M2 N 0.01 0.06 0.02 0.06 0.04 0.05
S1 0.00 0.11 0.00 0.14 0.02 0.17
S2 0.01 0.19 0.02 0.24 0.06 0.37
S3 0.01 0.28 0.03 0.39 0.09 0.65
A1 0.00 0.25 0.03 0.43 0.46 0.80
A2 0.01 0.32 0.06 0.44 0.36 0.77
A3 0.00 0.59 0.03 0.88 0.73 1.00



Why does it work?

The formal proof is given in Bühlmann (1997), some
modifications are, however, necessary,

An intuitive explanation: Bickel and Bühlmann (1997) explain
that the closure of the Wold representation is fairly large. It
means that for any non-linear stochastic process there exist
another process in the closer of linear processes having identical
sample paths with probability exceeding 1/e ≈ 0.37;

A rule of thumb for applications: Kreiss et al. (2011) prove
that if the distribution of a relevant statistic is determined solely
by the first two moments, then the AR-sieve bootstrap is
expected to work.



Example: symmetric or asymmetric fan-charts?

Prediction bands (fan-charts) have become a standard tool of
central banks in assessing risk about the future development of
the economy (see Clements and Hendry (2008, Chap. 2,3));

But we hold the view that only correct prediction bands may
be useful in practice;

Researches face an ultimate dilemma whether to construct
symmetric or asymmetric fan-charts (symmetric = Bank of
Canada, Riksbank, Norges Bank; asymmetric = Bank of
England, NBS, National Bank of Poland, Bank of Italy);

Other applications of the BAD test: calculating the probability of
deflation; density forecast evaluation (DSGE vs. (B)VAR
models).



Example: NBS inflation forecast errors

The forecast error is defined as Xt(h) = πt+h − πt(h) for a
forecast horizon h ∈ {1, . . . , 12}, where πt(h) stands for the
h-step ahead forecast of the (year-on-year) CPI inflation rate and
πt+h denotes the actual inflation rate.

We focus on testing for marginal and joint normality of the NBS
inflation forecast errors:

marginal hypothesis:
H0 : F (Xt(h)) = N(0, σ2

h) against
H1 : F (Xt(h)) 6= N(0, σ2

h);
joint hypothesis:
H0 : F (Xt(1), . . . ,Xt(12)) = N(0,Σ) against
H1 : F (Xt(1), . . . ,Xt(12)) 6= N(0,Σ).



Example: symmetric or asymmetric fan-charts?

Figure : NBS Inflation Forecast Errors

0 10 20 30 40 50 60 70 80 90
−4

−2

0

2

4

periods

pe
rc

en
ta

ge
 p

oi
nt

s

 

 

h=1
h=6
h=12



Example: symmetric or asymmetric fan-charts?

Table : P-values of the BAD Test for Marginal and Joint Normality of the
Inflation Forecast Errors

hypothesis horizon B = 1000 B = 5000 B = 10000

marginal h = 1 0.04 0.04 0.04
h = 2 0.36 0.35 0.35
h = 3 0.24 0.24 0.24
h = 4 0.40 0.41 0.40
h = 5 0.49 0.50 0.50
h = 6 0.63 0.61 0.63
h = 7 0.91 0.89 0.87
h = 8 0.84 0.86 0.86
h = 9 0.87 0.86 0.87
h = 10 0.73 0.74 0.73
h = 11 0.57 0.59 0.57
h = 12 0.56 0.59 0.58

joint h = 1, . . . , 12 0.65 0.62 0.62
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Thanks

Thank you for attention.


